IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1987

Ruthenium, rhodium, and iridium complexes of thiophene and benzo[b]thiophenes: models for catalytic hydrodesulfurization

Sara C. Huckett *Iowa State University*

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Inorganic Chemistry Commons</u>

Recommended Citation

Huckett, Sara C., "Ruthenium, rhodium, and iridium complexes of thiophene and benzo[b]thiophenes: models for catalytic hydrodesulfurization " (1987). *Retrospective Theses and Dissertations*. 8654. https://lib.dr.iastate.edu/rtd/8654

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17" \times 23"$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6'' \times 9''$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

·

. . .

Order Number 8805084

.

.....

Ruthenium, rhodium, and iridium complexes of thiophene and benzo[b]thiophenes: Models for catalytic hydrodesulfurization

Huckett, Sara C., Ph.D.

Iowa State University, 1987

4 10 10

-

· • ·

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print
- 3. Photographs with dark background
- 4. Illustrations are poor copy _____
- 5. Pages with black marks, not original copy _____
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages _/____
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.

14. Curling and wrinkled pages _____

15. Dissertation contains pages with print at a siant, filmed as received _____/

16. Other_____

.

U·M·I

. . .

•-

. .

and a second second

···· · · ···

Ruthenium, Rhodium, and Iridium complexes of thiophene and benzo[b]thiophenes: Models for catalytic hydrodesulfurization

by

Sara C. Huckett

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry Major: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

In Charge/of Majbr Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

1987

.

.

TABLE OF CONTENTS

	Page
DEDICATION	iv
PREFACE	1
SECTION I. THE HYDRODESULFURIZATION OF BENZO[b]THIOPHENE	2
INTRODUCTION	3
PROPOSED MECHANISMS	7
HYDRODESULFURIZATION REACTIVITY OF BENZO[b]THIOPHENE	33
MODES OF ADSORPTION	38
NONMECHANISTIC STUDIES OF BENZO[b]THIOPHENE HYDRODESULFURIZATION	41
REFERENCES	43
SECTION II. Ru, Rh, AND Ir COMPLEXES OF π-BOUND THIOPHENE AND BENZO[b]THIOPHENES: MODELS FOR THIOPHENE BINDING TO HDS CATALYSTS	47
INTRODUCTION	48
EXPERIMENTAL SECTION	51
RESULTS AND DISCUSSION	61
CONCLUSION	73
REFERENCES	74
SUPPLEMENTARY MATERIAL	77
SECTION III. REACTIVITY OF HDS MODEL COMPLEXES: NUCLEOPHILIC ADDITION TO π-COORDINATED THIOPHENE AND BENZO[b]THIOPHENES	85
INTRODUCTION	86
EXPERIMENTAL SECTION	88

iii

RESULTS AND DISCUSSION	99
CONCLUSIONS	132
REFERENCES	133
SUPPLEMENTARY MATERIAL	140
SECTION IV. DEUTERIUM EXCHANGE OF BENZO[b]THIOPHENE: MODEL COMPLEX AND HETEROGENEOUS REACTOR STUDIES	153
INTRODUCTION	154
EXPERIMENTAL .	159
RESULTS AND DISCUSSION	165
CONCLUSIONS	178
REFERENCES	179
SUMMARY	182
ACKNOWLEDGMENTS	183
	100

.

. .

.

•

an - 1

DEDICATION

To Steve, Jenny, and Ben

*

.

.

•

.

. .

PREFACE

Although numerous attempts to elucidate the mechanism of thiophene and benzo[b]thiophene catalytic hydrodesulfurization by means of heterogeneous reactor studies have been reported, important questions concerning this process remain unanswered. Therefore, a different method of approaching the problem would seem to be indicated. The synthesis of model complexes of thiophene and benzo[b]thiophene bound to transition metals would provide an opportunity to investigate the preferred coordination modes of these organosulfur compounds. These complexes would also provide an opportunity to study the reactivity of the thiophenic ligands, focusing on reactions which are analogous to those believed to occur over HDS catalyst surfaces. The research presented in this thesis consists of the synthesis of Ru, Rh, and Ir model complexes of thiophene and benzo[b]thiophene and benzo[b]thiophene ligands are also described.

This thesis consists of four sections. The first section is an introduction to catalytic benzo[b]thiophene hydrodesulfurization and the following sections represent the research as it was submitted for journal publication. Literature citations, tables, and figures pertain only to the section in which they are included.

SECTION I. THE HYDRODESULFURIZATION OF BENZO[b]THIOPHENE

.

.

ŧ.

. .

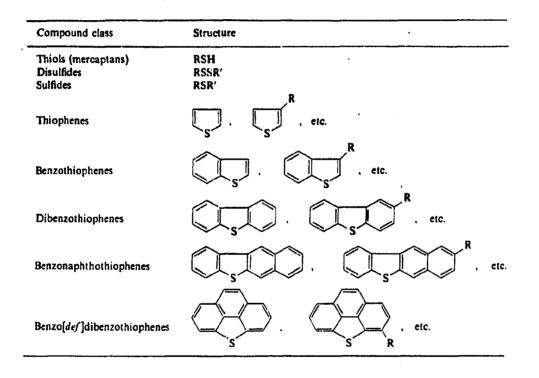
.

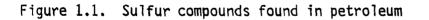
.

.

INTRODUCTION

Hydrodesulfurization (HDS) is probably the most important chemical reaction currently performed.¹ This process involves the removal of sulfur from sulfur-containing hydrocarbons and is usually accomplished by the catalytic reaction of hydrogen with the sulfur compound to produce H_2S and hydrocarbons.

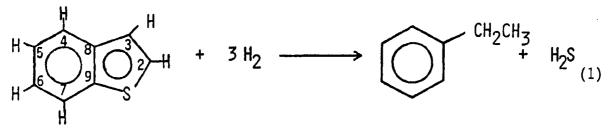

The principal application of this process is in the petroleum refining industry where it is performed for several reasons. The first concerns air pollution. Because the combustion of sulfur-containing fuel oils produces sulfur dioxide, current standards require the removal of up to 80% of the sulfur present. In addition, the sulfur content of gas oil fed to catalytic crackers must be reduced in order to prevent emission of sulfur dioxide during regeneration of the catalyst. Another important reason for reducing the sulfur content of petroleum feeds is that many of the catalysts used to process them are poisoned by sulfur. Bimetallic reforming catalysts are quite sensitive and the sulfur content of the feed must be limited to 1 ppm or less. Hydrocracking catalysts are also sensitive to sulfur poisoning. Finally, decreasing the amount of sulfur helps reduce corrosion during the refining and handling of the product as well as improving its odor.²


The identification of sulfur-containing compounds in feedstocks ranging from light petroleum fractions to petroleum residua and coalderived oils has been an area of ongoing research.³ Although the sulfur content of petroleum can vary from 0.01 to 10 wt. %, attention has primarily been focused on the highly sulfurous petroleums and the high

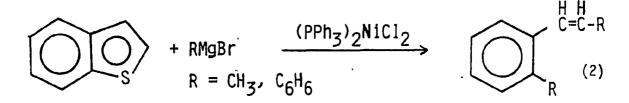
boiling distillates where the bulk of the organosulfur compounds are concentrated.^{3a} The classes of compounds encountered are illustrated in Figure 1.1 in approximate order of decreasing HDS reactivity.⁴ The most important class is the thiophenic compounds which constitute up to 84% of the sulfur compounds found in middle and high boiling fractions.⁵ In alternative fossil fuel sources such as coal, oil shale, and tar sands the sulfur compounds are also predominantly thiophenic.⁶ A survey of structural group compositions of the thiophenic class shows that. benzo[b]thiophene derivatives usually comprise the greatest fraction although dibenzothiophenes constitute a significant proportion.³

The most important industrial HDS catalysts are $Co-Mo/Al_2O_3$ and $Ni-Mo/Al_2O_3$ which are used in their sulfided forms.⁷ The $Ni-W/Al_2O_3$ catalysts are also quite active but are more expensive and less widely used.⁸ Extensive research has been directed at learning more about the active sites, promotional effects of Co and Ni, and role played by the support in these catalysts. Recent reviews have summarized the results of these studies.^{7,9}

The mechanism of the desulfurization process for organosulfur compounds has also been the subject of numerous investigations but it is still not well understood. Spectroscopic and heterogeneous reactor studies have been used in attempts to elucidate adsorption modes of the sulfur compound on the catalyst surface and the subsequent reactions which it undergoes. Model sulfur-containing compounds which are representative of those found in crude oils and coal liquids are often used in these studies. Thiophene is the compound most frequently employed because of

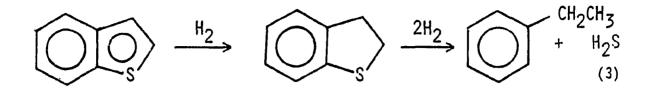

...

the large proportion of thiophenic compounds present in HDS feeds and its low reactivity as compared to thiols, disulfides, and sulfides.¹⁰ However, since benzo[b]thiophene and its derivatives are actually present in significantly greater quantities than thiophene it should provide a better model for studying the HDS process. The next five sections consist of an exhaustive review of the catalytic HDS of benzo[b]thiophenes.

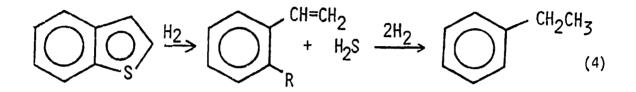

.....

PROPOSED MECHANISMS

The HDS reaction for benzo[b]thiophene (BT), shown in eq. 1, produces H₂S and ethylbenzene (EB).

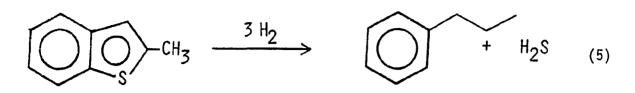


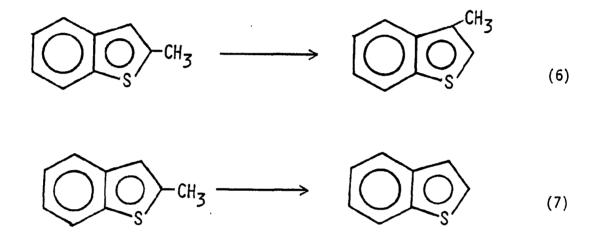
This reaction is catalyzed industrially by promoted $Mo/A1_20_3$ catalysts⁷ but Raney Nickel or a heated palladium catalyst can also be used.¹¹ Grignard reagents and a nickel catalyst have been used to desulfurize BT.¹² However, the ultimate goal of mechanistic studies of BT



HDS is usually to provide information which will facilitate improvement of the commercial process. Therefore, most of the research in this area is done with catalysts which are actually used or are similar to those used industrially.

The mechanism of BT HDS has been much less widely studied than that of thiophene $(T)^{13}$ but between 1951 and 1987 approximately 50 publications on this subject appeared. In spite of this effort key aspects of the mechanism are still disputed. An important point of contention is whether or not it is necessary to hydrogenate the C2-C3 double bond before the desulfurization occurs, eq. 3. The alternative is hydrogenolysis, eq. 4,


in which hydrogenation and desulfurization occur simultaneously. There is also disagreement as to how BT binds to the catalyst surface. For this


type of compound both coordination via sulfur or the π -electrons seem reasonable and both have been suggested. In the next section the results of mechanistic investigations which led to these proposals will be discussed.

Hydrogenation Givens and Venuto¹⁴ studied the HDS of BT and its derivatives (BTs) over cobalt molybdena and noble metal (Pt, Rh, Pd) catalysts which were supported on alumina. The results discussed here pertain only to the cobalt molybdena catalysts. A continuous flow reactor system was used at 400°C and 1 atm pressure. A variety of BTs ranging from mono-, di-, and tri-methylated BTs (MeBTs, Me₂BTs, Me₃BTs) to dihydroBTs (DHBTs) were examined.

Their results indicated that the principal hydrocarbon products resulting from the HDS reactions were those that would arise from a simple direct sulfur extrusion reaction. For example, 2-MeBT gave n-propylbenzene as the major product. However, side reactions such as

alkyl migration and dealkylation were also observed, as shown in equations 6 and 7, respectively. Hydrocarbon products resulting from HDS of the rearranged BTs were detected in small amounts.

Their results also showed that an increase in the number of methyl groups present generally decreased both conversion and HDS selectivity. Conversion is the percentage of reactant converted to either organic or other organosulfur compounds and selectivity is the (percent desulfurization/percent conversion) X 100%. For example, the conversions of BT, 2-MeBT and 2,3-Me₂BT are 99%, 74%, and 39%, respectively. The selectivities of these compounds are 100%, 89% and 38%. An exception to this trend is 2,3,7-Me₃BT which undergoes a 47% conversion. However, this compound did have one of the lowest selectivities of those studied, 34%. In terms of selectivity the position of the methyl substituent seems to be

important. The 3-MeBT shows a noticeably lower selectivity (75%) than 2-MeBT, but 7-MeBT has a 95% selectivity. It appears that a substituent on the benzene ring has a less pronounced effect on the reactivity of the sulfur containing compound.

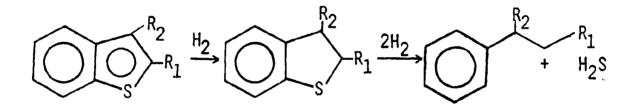
The researchers were interested in learning more about possible intermediates in the HDS process. With this in mind, they performed experiments at both low temperatures and very high flow rates. In these cases, DHBT was observed in the reaction products. In fact, at 300°C equal amounts of DHBT and EB were produced. Hydrogenated products were also observed for runs performed using 2,3,7-Me₃BT and 2,3-Me₂BT. The desulfurized products resulting from these reactions were 3-secbutyltoluene and sec-butylbenzene, respectively.

The hydrogenated compounds were present as the erythro and three isomers, shown below for $DH(2,3,7-Me_3)BT$.

These results suggested the intermediacy of DHBTs in the HDS process. Therefore, reactor studies using DHBT as a feed were undertaken. The DHBT HDS produces EB at a rate comparable to that observed for BT. However, DHBT is also in rapid equilibrium with BT and, therefore, on the basis of these experiments it was not possible to determine the source of the desulfurized product.

Other possible reaction pathways which might involve intermediate thiophenols, C-C bond cleavage steps, or partial hydrogenation of the benzene ring were also investigated but evidence for occurrence of these alternate mechanisms was not obtained.

On the basis of the results for all of the compounds investigated Givens and Venuto concluded that DHBTs "appear to be" intermediates in the HDS of BT. As stated earlier this conclusion must be taken somewhat cautiously in view of the indeterminate nature of the DHBT reactor studies. However, they feel that the detection of DHBTs under relatively mild reaction conditions and their behavior over HDS catalysts supports this conclusion.


Givens and Venuto's conclusions concerning the intermediacy of partially hydrogenated BTs are supported by the results of studies done to examine the HDS and hydrogenation properties of Co and Ni promoted MoS_2 and WS_2 catalysts (supported on $_{\rm Y}$ -Al₂O₃). These experiments were performed under continuous flow conditions at medium pressure (100 atm) and slightly lower temperature conditions (250°C).¹⁵ It was noted that as HDS activity of the catalysts decreased as a function of run time the concentration of DHBT in the reaction products increased significantly faster than that of BT. No benzene ring saturation was observed. This increase in percentage of hydrogenated reaction products with decreasing HDS activity was not observed for thiophene (T). This was interpreted to indicate that there is a contrast in the mechanism of HDS of BT and T; in

the latter case desulfurization does not require partial hydrogenation of the substrate. No further experiments which would better support the proposed DHBT intermediate were reported.

Geneste¹⁶ and coworkers have studied the HDS of dibenzothiophene (DBT) and BTs as well as their sulfoxides and sulfones. They used a sulfided $CoO-MoO_3-Al_2O_3$ catalyst under stirred batch reactor conditions. Pressures ranged from 30-70 atm and temperatures from 200-300°C.

The only products obtained from the BT runs were DHBT and EB. The 2-MeBT, 3-MeBT and 2,3-Me₂BT derivatives were also used and gave products as shown in the following equation. In agreement with Givens and Venuto

(8)

 $R_1 = R_2 = H (BT)$ $R_1 = CH_3, R_2 = H (2-MeBT)$ $R_1 = H, R_2 = CH_3 (3-MeBT)$ $R_1 = R_2 = CH_3 (2,3-diMeBT)$

they felt that for BT and its derivatives the C1-C2 double bond is hydrogenated before C-S bond cleavage occurs. The rate constants and

apparent activation energies for the hydrogenation step were determined and are presented in Table 1.1. The rates for the hydrogenation of the BTs decrease in the order,

which is the same order of conversion and selectivity towards HDS found by Givens and Venuto.¹⁴ However, in contrast to the results presented by these authors Geneste et al. did not observe either dealkylation or methyl migration reactions. Additionally, when DHBT was used as a feed under these conditions there was no dehydrogenation to BT. These inconsistencies with the earlier work were attributed to differences in operating conditions such as temperature, pressure, catalyst preparation and concentration of the organosulfur reactant.

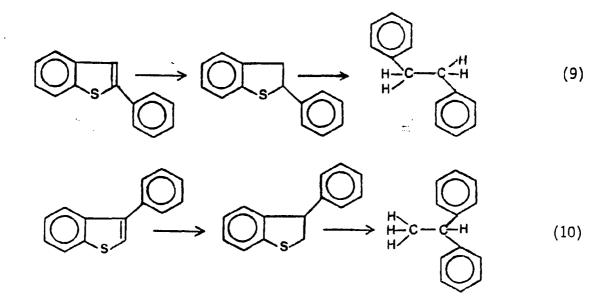
Geneste feit that an electronic effect (as opposed to steric) was responsible for the differences in the rates of hydrogenation of the BTs. To support this hypothesis he found that a plot of log k ("of the first step of HDS", hydrogenation) versus the vertical ionization potential for each of the compounds studied was linear. This correlation was interpreted as representing the relationship between the reactivity of the BTs and their HOMOs.

The reactivity of the BTs was contrasted to that of DBT for which HDS was proposed to occur without initial hydrogenation of the compound. The primary products found in this case were biphenyl (BP) and phenylcyclohexane (PCH).

Compound	T (°C)	10 ⁴ k (min ⁻¹)	Activation energy (kcal mol ^{-1})
ВТ	200 230 250 280 300	4.1 28 84 240 470	25
2-MeBT	250	31	
3-MeBT	200 230 250 280 300	0.6 6 15 82 220	32
2,3-Me ₂ BT	200 230 250 280 300	0.1 2.1 9 37 100	37

Table 1.1. Kinetic data for the hydrogenation of BTs at P_{H2} = 50 atm

,

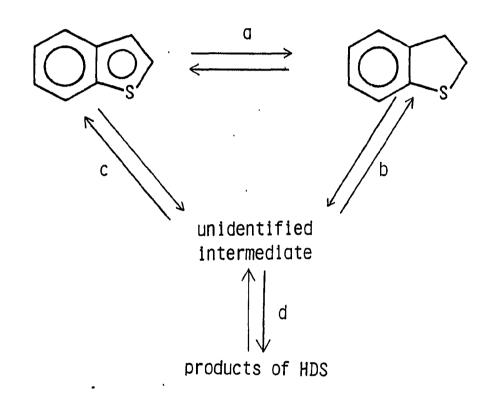

.

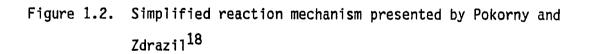
.....

.

. . .

Geneste has also studied the HDS of 2-phenylBT (2-PhBT) and 3-phenylBT (3-PhBT) over a sulfided Ni-Mo/ $_{Y}$ -Al₂O₃ catalyst (autoclave reactor, 250°C, 40 atm).¹⁷ The products of 2-PhBT and 3-PhBT HDS are shown in equations 9 and 10. As depicted in the equations desulfurization




was again believed to occur after initial hydrogenation of the BT. The extended reactivity order for hydrogenation of these BTs is BT > 2-PhBT > 3-PhBT > 2-MeBT > 3-MeBT. In contrast to the explanation previously offered, the decrease in rate for the methylated derivatives is suggested to be due to steric effects.

Studies by Pokorny and Zdrazil¹⁸ indicate that the mechanism of HDS of all aromatic sulfur-containing heterocyclic compounds is similar. The cleavage of a C-S bond is preceded by at least partial cancellation of the aromaticity by hydrogenation. Their experiments were performed over sulfided Co-Mo-Al₂O₃ and MoS₂ catalysts in a tubular flow reactor between 270 and 350°C and at 20 atm.

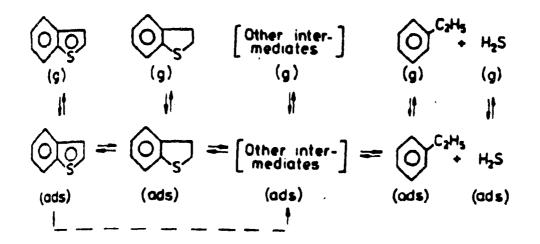
As in earlier investigations, significant amounts of DHBT were produced from the BT runs. A simplified reaction mechanism, Figure 1.2, was presented and discussed with respect to these results and the known properties of BT. It was suggested that either o-vinylthiophenol, o-ethylthiophenol or styrene, which are all very unstable under HDS conditions, could be the unidentified intermediate. Since Pokorny and Zdrazil were interested in exploring the possible intermediacy of DHBT neither the origins nor the identities of these possible intermediates were pursued. Step a is supported by the experimental work but the inability to draw conclusions from the kinetic data as to whether step b is operative as opposed to c, or whether both occur in parallel was acknowledged. However, it was noted that reactions involving cleavage of C-S bonds with double bond character are not typical of the chemistry of sulfur containing heterocyclic compounds. Pathways proposed for the hydrogenation of aromatic hydrocarbons are discussed and compared to those proposed for BT HDS. They felt this was a valid comparison since the electronic structures of thiophenic compounds are analogous to those of aromatic hydrocarbons. Because aromatic hydrocarbons have been proposed to form π -complexes on sulfided Co-Mo-Al₂O₃ catalysts and then undergo hydrogenation, it was suggested that similar behavior would be exhibited by the thiophenic compounds under these conditions. The instability of these intermediates under reactor conditions prevents their detection under most conditions. In contrast to most others who propose DHBT as an intermediate in the HDS process Pokorny and Zdrazil went one step further to suggest that partial saturation of the benzene ring is also

.....

.....

....

.


. . .

required. However, these types of intermediates were neither included in their proposed reaction mechanism nor further identified. The saturation of the benzene ring is said to be necessary because there is still interaction of the S with the benzene ring aromatic system in DHBT giving rise to a C9-S bond order of greater than one. As support for this suggestion he cited the hydrogenative cleavage of phenols over sulfide catalysts. These reactions are generally assumed to occur via cyclohexanol to give cyclohexene. Even under hydrogenation conditions benzene can be the final product of this reaction.

Lopez et al. have reported further studies with sulfided Mo/Al_2O_3 , Co-Mo/Al_2O_3, and Ni-Mo/Al_2O_3 catalysts.¹⁹ In this case a similar but more complex reaction network for BT HDS was presented, Figure 1.3. The dotted line presumably represents the disfavored but not disproven hydrogenolysis mechanism. The conversion of BT to DHBT was determined for each of the catalysts studied. The results showed that addition of Ni to a Mo/Al_2O_3 catalyst resulted in lower selectivity to DHBT. Previous results had shown that addition of Co to a Mo/carbon catalyst decreased selectivity to tetrahydrothiophene (THT) in T HDS. Therefore, the conclusion was that one of the roles of the promoter is to decrease the stability of the hydrogenated intermediate.

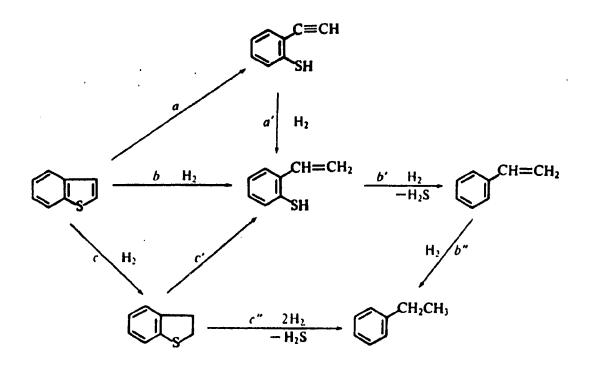
The importance of partially hydrogenated intermediates has also been suggested by Odebunmi and Ollis.²⁰ Their work was performed at 400°C and 69 atm of H_2 pressure. Although the major product of BT HDS was EB trace amounts of DHBT and phenylethanethiol were also formed.

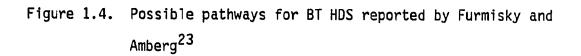
...

(g)-gas phase, (ads)-adsorbed

Figure 1.3. Reaction network for BT HDS proposed by Lopez et al. 19

.


Mercaptans have been reported by Landa and Mrnkova as products of BT reacting over MoS_2 in an autoclave at 1 atm and $320^{\circ}C.^{21}$ They considered these mercaptans to be the first intermediates in the HDS process. The thiols were produced in small amounts relative to EB but this was explained in terms of the high reactivity of these species under HDS conditions. In an interesting contrast to other investigations, ethylcyclohexane (EC) was also observed in the products in significant quantities. This lends support to Pokorny and Zdrazil's proposal that the benzene ring of BT must also undergo at least partial hydrogenation in the HDS process.


Hydrogenolysis Bartsch and Tanielian used a fixed bed microreactor at 300-400°C and 1 atm pressure to study the HDS of BT over a sulfided Co-Mo/Al₂O₃ catalyst.²² The only product reported was EB. DBT was also studied and gave only BP. PCH showed no evidence of dehydrogenating to BP over the catalyst, therefore, it was proposed that hydrogenation of the aromatic compound was not necessary in order to obtain easier opening and subsequent sulfur removal.

Furimsky and Amberg²³ became interested in learning more about the role of DHBT in BT HDS as a result of the conflicting reports of Givens and Venuto¹⁴ and Bartsch and Tanielian.²² They examined HDS of BT and DHBT from 250-400°C at 1 atm pressure in a flow microreactor. Two catalysts were used. Over a Co-Mo/Al₂O₃ catalyst the reaction BT produced only EB. DHBT produced both BT and EB as products showing that dehydrogenation as well as desulfurization took place under these conditions.

An unsupported Co-promoted MoS₂ catalyst was also used. Over this catalyst styrene (STY) was produced in both the BT and DHBT reactions. If the amount of catalyst was increased the relative yield of STY decreased, presumably due to longer residence of STY in the catalyst bed which would result in increased hydrogenation. This suggested that STY could have also been a product for the supported catalyst runs but was too rapidly hydrogenated to be detected. A separate experiment showed that STY pulsed into a reactor containing the supported catalyst was completely converted to EB.

The observation of STY in the HDS products of both BT and DHBT was cited as support for the mechanism which involves direct C-S bond cleavage without intermediate hydrogenation of the thiophene ring. The fact that DHBT is extensively dehydrogenated under these conditions is suggested to imply that BT could be the intermediate source of desulfurization products for DHBT HDS. A scheme for the HDS of BT which explains the formation of STY but includes all possible pathways was proposed, Figure 1.4. The formation of DHBT was considered improbable under the conditions studied due to the extensive dehydrogenation of DHBT which was observed. In spite of this, steps c' and c" were included for completeness since runs using DHBT produced both EB and STY when He was used as a carrier gas instead of H_2 . Step a was supported by Givens' and Venuto's observation that 3-MeBT which lacks a β -hydrogen was desulfurized more slowly than BT. Therefore, although the conclusion was that C-S bond cleavage is the first step in BT HDS a sincere attempt was made to explore other possible pathways.

.

Although iron had been described, in terms of its ability to act as a desulfurizing agent for petroleum fractions, in the patent literature, few studies of its activity have been reported. Bartsch and Tanielian were the first to investigate its activity towards BT HDS.²⁴ They used an Fe_2O_3/Al_2O_3 catalyst at 1 atm pressure and 300-400°C. The catalyst appeared to be less active than the Co-Mo/Al_2O_3 catalysts. DHBT was not observed as a product from BT but STY was observed at 300°C during activation phase of the catalyst runs. This was viewed as supporting the initial step as C-S bond cleavage as opposed to hydrogenation.

Rollman has investigated the heteroatom removal from N, O and S heterocycles.²⁵ Sulfided CoMo and SiO_2 -stabilized CoMo catalysts were used at 20-102 atm and 300-450°C in a down-flow stainless steel reactor. BT, DBT, indole, benzofuran and other heterocycles were used as feeds. BT produced only EB and had one of the fastest rates of reaction. This was interpreted as an example of facile heteroatom removal which did not involve significant hydrogenation of the aromatic ring system. For the oxygen and nitrogen systems prior saturation of the aromatic ring was required.

Low pressure reactivity studies of thiophenic compounds over a sulfided $CoO-MoO_3/r-Al_2O_3$ catalyst have also been undertaken by Kilanowski et al.²⁶ They used a pulse microreactor (1 atm, 350-450°C) and BT, methylated BTs and DHBT feeds in these experiments. The fractional conversions of these reactants at 450°C are given in Table 1.2. The products, except for the BT and DHBT runs, were the alkylbenzenes which would be expected for direct sulfur extrusion reactions. In both of these

Reactant	Fractional Conversior
BT	0.14
2-MeBT	0.10
3-MeBT	0.093
7-MeBt	0.10
3,7-Me ₂ BT	0.033
DHBT	0.97

.....

-

Table 1.2. Fractional conversion of organosulfur compounds reported by Kilanowski et al.²⁶

•

. . .

cases STY was observed as a major product in addition to EB. Dehydrogenation of DHBT was also observed in a significant amount (28%). This result and the lack of any observed dealkylation or alkyl migration reactions contrasts the results previously reported by Givens and Venuto¹⁴ but is in agreement with those of Bartsch and Tanielian²² as well as Furimsky and Amberg.²³ Differences in reaction temperature or catalyst structures were cited as possible explanations for this discrepancy. The temperature difference (400°C for Givens and Venuto, 450°C for Kilanowski) would seem too small to have such a significant effect on the product distributions. However, the CoMo/ γ -Al₂O₃ used by Givens and Venuto was not sulfided before use and, therefore, the possibility of different catalyst structures for the two experiments seems reasonable.

The lack of observation of saturated or partially saturated intermediates (such as sulfides, mercaptans or DHBT) is again used to suggest that hydrogenation is not a prerequisite to C-S bond scission. The production of STY is taken as further support for this conclusion.

Ramachandran and Massoth²⁷ have examined the effects of pyridine and coke poisoning on BT HDS and hexene hydrogenation over a commercial sulfided $CoMo/Al_2O_3$ catalyst at 0.85 atm and 350°C. Their results suggest that the three reactions of HDS, hydrogenation, and cracking take place on different sites. Additional studies showed that the HDS reaction was strongly inhibited by H₂S but only slightly by H₂. In contrast the hydrogenation of hexene was inhibited by H₂. This provides support for HDS via nonhydrogenated intermediates which is not based only on observed product distributions or conversions.

Dual Pathways Although the previously discussed efforts have attempted to put forth either hydrogenation or hydrogenolysis as the first step in the process of BT HDS, a number of researchers have come to the conclusion that the two pathways are both operative. The reaction network proposed by Daly, Figure 1.5, incorporates both DHBT and STY as intermediates.¹³ The conversion of BT was studied in a bomb reactor at 85 atm between 200-400°C over a sulfided CoO-MoO₃/Al₂O₃ catalyst. In addition to EB formation DHBT, STY, 1-phenylethanethiol and 2phenylethanethiol were also observed as products. The thiols were suggested to result from reaction of STY with H_2S . The reaction of H_2S and alkenes, catalyzed by elemental sulfur, has previously been reported.²⁸ When Daly added sulfur to the reactor the rate of formation of the thiols increased, presumably due to a sulfur-catalyzed back reaction of ${\rm H}_2 S$ and styrene. Therefore, in this case the production of thiols from STY is competing with the HDS process. This contrasts the proposals by Lopez et al.¹⁹ and Landa and Mrnkova²¹ in which the thiols are present only as intermediates of HDS.

Production of 1-phenylethanethiol was also observed by Guin et al. for the reaction of BT over pyrite (bomb reactor, 410°C, 85 atm).²⁹ DHBT was the major product and small amounts of EB were formed. STY was not observed. Thus, the pyrite catalyst efficiently catalyzed the hydrogenation of BT but was not as effective as $Co-Mo/Al_2O_3$ catalysts in the desulfurization step. The 1-phenylethanethiol was assumed to be a product of H₂S reaction with STY as was proposed by Daly.¹³ The reaction network is similar to that presented by Daly except that the C-S bond

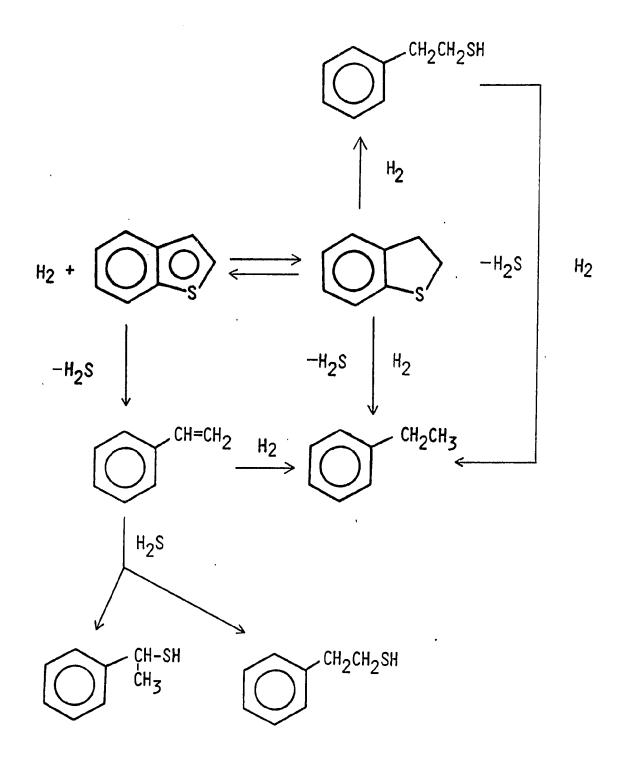


Figure 1.5. BT HDS mechanism proposed by $Daly^{13}$

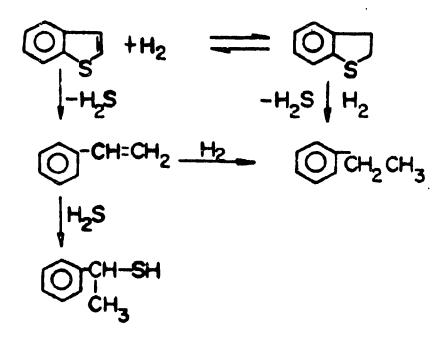


Figure 1.6. Mechanism for BT HDS proposed by Guin et al.²⁹

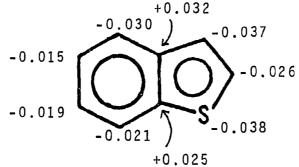
••• • • • • • • • • • •

.

. .

cleavage reaction of DHBT to give 2-phenylethanethiol, which was not observed in the product stream, was not included. Because pyrite is readily reduced by H_2 at 400°C, as shown in eq. 11, H_2S is liberated from the catalyst during the course of the reaction to form pyrrhotite. According to the proposed mechanism H_2S should inhibit the reactions of

$$FeS_2 + x H_2 \longrightarrow FeS_{2-x} + x H_2S$$
 (11)
0.86 < x < 1

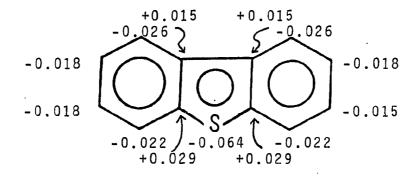

DHBT and BT to form EB and increase the relative amount of thiol produced. The identification of 1-phenylethanthiol as well as the low yields of EB are consistent with this interpretation. The high yields of DHBT were attributed to the relatively high H_2 pressures used in this study. Large amounts of DHBT were also produced from BT in Daly's work which was performed at 85 atm.¹³

The dual pathway mechanism has been suggested by Lopez based on the results of his work with unpromoted and Ni-promoted Mo/Al_2O_3 catalysts.³⁰ His studies were performed with the sulfided catalysts between 280-400°C and 20 atm. His data were consistent with the proposal that two types of active sites are present, one for hydrogenation, the other for hydrogenolysis. The relative importance of the hydrogenation step was found to decrease upon addition of the Ni promoter.

A theoretical approach to the problem of hydrogenation versus hydrogenolysis has been reported by Geneste et al.³¹ CNDO molecular orbital calculations for a series of thiophenic compounds (BTs, DBT, and

.....

napthobenzothiophene (NBT)) were performed. The localized charges for each of the carbon and sulfur atoms of these compounds were reported. The results for BT are shown below. The localized charges give rise to zones



of negative and positive charge. The fact that the localized negative charge is approximately equal for S, C2 and C3 is suggested to orient the molecule so that these atoms interact most strongly with the catalyst surface. The subsequent expectation then is that a competition between hydrogenolysis and hydrogenation reactions will result. The order of HDS reactivity for a series of BT derivatives¹⁷ was correlated with the

BT > 2-PhBT > 3-PhBT > 2-MeBT > 3-MeBT -0.101 -0.090 -0.080 -0.067 -0.062

magnitude of the charge in the zone of negative charge. These numbers are shown below each compound and are the sum of the localized charges for S, C2 and C3.

In contrast to these results, those obtained for DBT are shown on the following page. In this case the negative charge is localized on the sulfur and, therefore, hydrogenolysis as opposed to hydrogenation would be expected to occur for this compound.

Since dual hydrogenolysis and hydrogenation pathways have been proposed for $BT^{13,27,28}$ and a hydrogenolysis only pathway for DBT HDS³² the authors concluded that these types of calculations are useful for elucidating favored reaction pathways of thiophenic compounds over HDS catalysts. However, others have proposed that BT HDS occurs via either hydrogenolysis²²⁻²⁷ or hydrogenation¹⁵⁻²¹ only as well as that DBT undergoes HDS via a dual pathway mechanism.^{25,33} These pathways are not consistent with those predicted by the localized charge calculations but this point was not addressed by the authors.

BT desulfurization via H_2 supplied by the water gas shift reaction has recently been accomplished.³⁴ A sulfided Ni-Mo/Al₂O₃ catalyst at 68 atm from 310-370°C was employed in these experiments; CO₂, H₂O and CO were also present in the reactor. This system was found to be very effective in the HDS of BT and it was also suggested that the water present may have inhibited the rate of coking of the catalyst. EB was the major product, only traces of DHBT were detected. These observations led to the conclusion that the HDS reaction could have taken place through two different reaction pathways, hydrogenation and hydrogenolysis.

Van Parijs et al. have studied the HDS of BT over a $Co-Mo/\gamma-Al_2O_3$ catalyst in a tubular reactor.³⁵ The temperature range was 240-300°C and the pressure 5-30 atm. A kinetic model for both the hydrogenolysis of BT to EB and hydrogenation to DHBT with subsequent production of EB was determined. On the basis of this model the rate-determining step was proposed to be the concerted surface reaction between BT or DHBT and two adsorbed hydrogen atoms.

Summary The mechanism of BT HDS has been studied over a variety of catalysts, temperatures and pressures. Mechanistic pathways are generally proposed on the basis of the observed products as well as the observed reactivities of these products under the given conditions. The diversity of reported results prevents a determination of the important reaction pathway (or pathways) under industrial conditions even though this is in fact the reason that many of these investigations were undertaken. When considering the complex nature of heterogeneous catalysts it seems reasonable that a multipath reaction network might exist but on the basis of the available data no definite conclusions can be drawn.

HYDRODESULFURIZATION REACTIVITY OF BENZO[b]THIOPHENE

The HDS reactivity of BT relative to that of other thiophenic compounds is as much disputed as the HDS mechanism. An excellent example of the conflicting nature of the reports in this area is found in the first two sentences of a paragraph discussing BT and DBT HDS mechanisms.³⁶ "Benzothiophene and dibenzothiophene are as readily desulfurized as thiophene. The order of desulfurization reactivity is: thiophene > benzothiophene > dibenzothiophene."

Early work addressing this problem was reported by Obolentsev and Mashkina.³⁷ They studied the kinetics of the hydrogenolysis of sulphides and thiophenic compounds over an aluminum-cobalt-molybdenum catalyst (P_{H_2} = 33 atm, T = 375°C). The following reactivity order was established.

Experiments performed by Yamada³⁸ using MoS_3 in an autoclave reactor (300-450°C, 20-40 atm) showed that BT was more difficult to hydrogenate than T. In contrast to these results are those reported for a cobalt molydate catalyst (400°C, 1 atm) which was used to hydrogenate T, BT and DBT.³⁹ The respective conversions were 87, 91 and 73% for separate experiments which were performed under the same conditions. This suggests that there is relatively little difference in the reactivity towards hydrogenation for BT and T. The lower reactivity of DBT relative to BT has also been observed for the HDS reaction.^{20,40}

Frye and $Mosby^{41}$ have investigated the desulfurization rate of two Me_3 -BTs and DBT. A sulfided $CoMo/Al_2O_3$ catalyst was used at 15 atm and 290°C. The feeds were commercial catalytic cycle oils containing 0.4 to 2.0 wt % sulfur. The specific identities of the Me_3 -BT isomers (A and B) were not reported but it was determined that B was desulfurized at a rate approximately 1.6 times that of A. Isomer A was desulfurized about 3.8 times faster than DBT.

In a separate study the activation energies of the HDS of BT and DBT were reported for reaction over a sulfided $CoMo/Al_2O_3$ catalyst.²² The values were 4.9 kcal/ mol for BT and 5.3 kcal/mol for DBT. Thus, to desulfurize DBT to the same extent as BT approximately three times as much catalyst was required.

Similar rates of desulfurization for BT and DBT were observed by Rollman (sulfided CoMo catalysts, 300-450°C, 20-102 atm).²⁵ He suggested that diffusion effects might have been responsible for the previously proposed^{22,41} higher reactivity of BT. The similar reactivities of BT and DBT were also proposed by Kilanowski based on fractional conversions over a sulfided CoMo/ $_{Y}$ -Al₂O₃ catalyst (1 atm, 450°C).^{26a} Surprisingly, both compounds were approximately twice as reactive as T under these conditions. This lower reactivity of T as compared to BT and DBT was suggested to be due to the low pressure conditions. This would result in a lower surface concentration of T and, therefore, a lower conversion.

Nag et al. have performed high pressure studies which indicate that under these conditions T is the most reactive of the thiophene compounds investigated.⁴² A sulfided Co-Mo/ $_{Y}$ -Al $_{2}O_{3}$ catalyst at 300°C and 71 atm was

used in this work. The compounds studied were T, BT, DBT and BNT. The pseudo first order rate constants determined for the disappearance of the reactant are given in Table 1.3. These results show that although the reactivity tends to decrease sharply as the number of rings in the reactant increase, the reactivity is not governed solely by the size of the molecule as indicated by the increase in rate constant for BNT relative to DBT. On the basis of these results DBT appears to be the least reactive aromatic heterocycle.

The change in relative reactivities of BT and T with their changing pressures has also been addressed by Morooka and Hamrin.⁴³ In this case two different catalysts were used: mineral matter from Kentucky No. 11 coal as well as a $CoMo/Al_2O_3$ catalyst. Both were sulfided prior to use. Temperatures ranged from 350-440°C and the total pressure in the reactor was 1 atm. They found that at very low partial pressures of the sulfur compound the BT desulfurization rate is up to 2.8 times as fast as that of T. However, for partial pressures above 0.1 atm the rate of T HDS was always greater than that of BT.

Further support for the pressure reactivity relationship has been reported by Kilanowski and Gates.⁴⁴ At low partial pressures (0.015-0.23 atm) over a sulfided $CoMo/Al_2O_3$ catalyst at 252-332°C BT was approximately half as reactive as T (as determined by the rates of conversion of BT or T). Pokorny and Zdrazil¹⁸ have also performed relative reactivity studies of BT and T at low partial pressures of sulfur compound. They used both MoS_2 and sulfided Co-Mo/Al_2O_3 catalysts at temperatures from 270-350°C and

Reactant	k (cm ³ /g catalyst, h)	
T	4980	
BT	2920	
DBT	220	
BNT	580	

--

.

Table 1.3. Reactivities of thiophenic compounds as determined by Nag et al.⁴²

a total pressure of 20 atm. For partial pressures of BT and T ranging from 0.05-0.14 atm BT is more reactive than T (as determined by conversion).

The proposed approximate reactivity order of thiophenic compounds,⁴ T > BT > DBT, under industrial conditions is supported by these investigations. The reverse order for BT and T noted for studies performed under low partial pressures^{18,26a,39,42,44} of sulfur compound are presumably due to decreased surface concentrations of T relative to BT and would generally not apply to the high pressure industrial process. The effect of alkyl substituents on the HDS rate can be complex; depending on the number and positions of the groups the reactivity can either increase or decrease.^{2,14,45} Extended reactivity studies addressing the relative order for the HDS of T, BT, and DBT derivatives have not been reported.

MODES OF ADSORPTION

Three types of adsorption modes for T binding to catalyst surfaces have been proposed. These include a one-point adsorption in which T is bound to the catalyst surface only through the lone pair of the sulfur atom, ⁴⁶ a two point adsorption via the C2-C3 double bond⁴⁷ and a flat π -bound coordination mode.^{36,48} These types of bonding modes have also been proposed for BT.

Kilanowski et al. have proposed that one-point adsorption of BT on a single anion vacancy should be the dominate coordination mode at low hydrogen partial pressures.²⁶ They suggested that sulfur only coordination favors a hydrogenolysis as opposed to a hydrogenation mechanism for HDS. These single anion vacancy sites have also been proposed to be responsible for the high reactivity of DHBT which lacks the π electrons which would be required for flat adsorption. The electrons available from the benzene ring are evidently not considered in this interpretation. At higher H₂ pressures the flat π -bound adsorption mode is proposed to play a more important role, presumably facilitating hydrogenation reactions.

A two point adsorption mode for coordination of BT to HDS catalysts has been proposed by Kwart et al.⁴⁷ In this case the C2-C3 bond would be coordinated at an anion vacancy of the catalyst. This interpretation was proposed to help account for the lower reactivity of 3-MeBT compared to 2-MeBT.¹⁴ If the coordination occurred via sulfur only, steric effects might be expected to decrease the relative reactivity of 2-MeBT. Benzene is proposed to coordinate parallel to the catalyst surface, however, it

has been suggested that the type of anion vacancy used in this case could be too small to accommodate larger aromatic molecules, such as BT. 49 Therefore, edge adsorption via C2-C3 could become important.

The flat π -bound coordination of BT to catalyst surfaces has been proposed by Pokorny and Zdrazil.^{18,48b} The hydrogenation of aromatic hydrocarbons such as benzene sulfided over CoMo/Al₂O₃ catalysts has been proposed to occur via a π -complex of the reactant on the catalyst surface. Due to the aromaticity of T and BT it seems reasonable that they would also favor parallel adsorption to the catalyst surface allowing for maximal interaction of the π -system. This view has also been supported by Nag et al.⁴²

Cowley³⁶ has proposed that BT coordinates to the HDS catalyst in a flat π -fashion through the thiophene ring to account for the results of his deuterium exchange experiments. Deuterium incorporation into the 2and 3-positions of BT was postulated to occur through a series a π - and σ -complexes as shown in Figure 1.7 for exchange of H2. He felt that a one-point sulfur coordination mode would give rise to exchange of the 2and 7-positions. For DBT^{33b} and BNT³² π -bonding to the catalyst surface via a benzene ring has also been suggested.

Both the one-point and multipoint adsorption modes can be considered consistent with the available data. The π -bound mode may seem more reasonable in terms of the aromatic nature of BT. Spectroscopic data supporting π -adsorption of T to catalyst surfaces have been reported⁵⁰ but no such studies have been performed for BT.

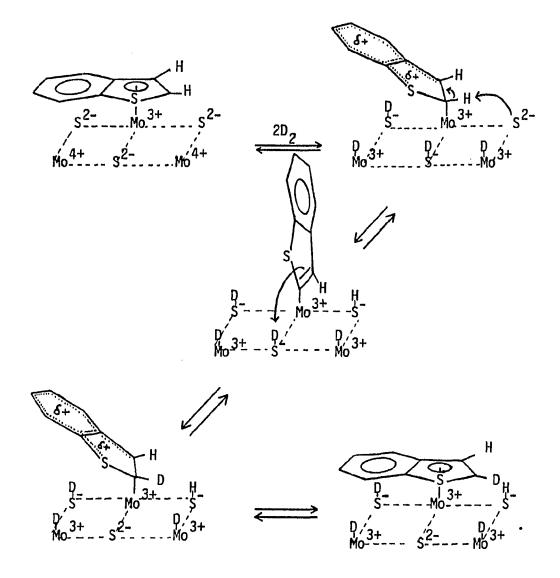


Figure 1.7. The Cowley mechanism for BT exchange³⁶

NONMECHANISTIC STUDIES OF BENZO[b]THIOPHENE HYDRODESULFURIZATION

In addition to serving as a representative sulfur-containing compound for HDS mechanistic studies, BT has been used as a model in other investigations. These include the testing of new HDS catalysts, optimization of sulfiding conditions and determination of the number of anion vacancies.

Graphite supported MK (or Na) catalysts (M = FeS, NiS, CoS, MoS, FeCl₃, OsCl₃, MoCl₃, WCl₆, CrO₃) were shown to desulfurize BT.⁵¹ HDS of BT by vanadyltetraphenylporphyrin has also been reported.⁵²

Gissy et al. have carried out the HDS of BT over a commercial $CoMo/Al_2O_3$ catalyst at 1 atm and 250-350°C.⁵³ The effects of pretreating conditions on catalytic activity were investigated by following the conversion of BT as a function of run time. It was found that presulfiding at 250°C, as opposed to higher temperatures, led to the most active catalyst. The effect of feed components on the catalyst activation procedure was also studied.⁵⁴ Presulfiding with H₂S was found to give better BT HDS activity than presulfiding with T. The hydrogenolysis of T was proposed to result in the formation of a coke precurser which would decrease the activity of the catalyst. The H₂S was thought to help protect the catalyst during the initial stages of feed supply by quickly forming sulfided sites.

The effect of cobalt on the HDS activities of $CoMo/Al_2O_3$ catalysts in sulfided and unsulfided forms was probed by considering the percent conversion of BT (300°C, 1 atm).⁵⁵ It was found that Co actually has an

inhibitory effect on the HDS activity of the unsulfided form. The HDS promotional effect of cobalt appeared only in the sulfided form.

Hillerova et al.⁵⁶ have found that cobalt-promoted Mo/Al₂O₃ catalysts show greater increases in HDS activity for BT than the nonpromoted catalysts. Their results were interpreted as evidence that cobalt plays a complex role in the transformation of the oxidic precurser into the sulfidic state as well as being directly involved in the active surface.

Pyridine poisoning experiments have been used to determine the active site vacancy concentration of a sulfided Mo/Al₂O₃ catalyst.⁵⁷ The effects of pyridine on the BT conversion and catalyst weight change were noted (347°C, $P_{BT} = 0.0032$ atm). The major product was EB but minor amounts of STY, DHBT, benzene and toluene were also observed. The presence of the latter two products was not discussed. Pyridine was found to adsorb on active desulfurization sites, with 0.24 molecules of pyridine adsorbing per molybdenum atom. The value is reported to be in good agreement with values for anion vacancies previously determined by kinetic and adsorption measurements for T reaction over a Mo/Al₂O₃ catalyst.

The effect of the volatile liquid phase on BT HDS in a trickle bed reactor system has been investigated.⁵⁸ The results show that the choice of solvent can significantly affect the rate of reaction. A solvent which is more volatile than BT will concentrate the sulfur compound in the liquid phase and increase BT conversion. If a less volatile solvent is used the opposite effect is noted.

REFERENCES

- 1. Schuman, S. C.; Shalit, H. in "Catalysis Reviews"; (Heinemann, H. ed.); Marcel Dekker, Inc.: New York, 1971; p. 246.
- Satterfield, C. N. "Heterogeneous Catalysis in Practice"; McGraw-Hill Book Co.: New York, 1980; p. 260.
- 3. (a) Lyapina, N. K. <u>Russian Chemical Reviews</u> 1982, <u>51</u>(2), 189. (b) Hoog, H.; Reman, G. H.; Smithuysen, W. C. B. <u>Proc. 3rd World Pet</u> <u>Congress (The Hague)</u> 1951, Section IV, 282. (c) Jewell, D. M.; Ruberto, R. G.; Swansiger, J. T. <u>Prep. Am. Chem. Soc. Div., Pet.</u> <u>Chem.</u> 1975, <u>20</u>, 19.
- 4. Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. "Chemistry of Catalytic Processes"; McGraw-Hill Book Co.: New York, 1979; p. 392.
- Aksenov, V. S.; Kamyanov, V. F. in "Organic Sulfur Chemistry"; (Freidina, R. Kh.; Skorova, A. E. eds.); Pergamon Press: New York, 1981; p. 201.
- 6. Thompson, C. J. in "Organic Sulfur Chemistry"; (Freidina, R. Kh.; Skorova, A. E. eds.); Pergamon Press: New York, 1981; p. 9.
- 7. Topsoe, H.; Clausen, B. S.; Topsoe, N. Y.; Pederson, E. <u>Ind. Eng.</u> <u>Chem. Fundam.</u> 1986, <u>25</u>, 25.
- 8. Satterfield, C. N. "Heterogeneous Catalysis in Practice"; McGraw-Hill Book Co.: New York, 1980; p. 264.
- 9. (a) Grange, P. <u>Catal. Rev. Sci. Eng.</u> 1980, <u>21</u>, 135. (b) Chianelli, R. R. <u>Catal. Rev.-Sci. Eng.</u> 1984, <u>26</u>, 361.
- 10. Schuit, G. C. A.; Gates, B. C. AIChE Journal 1973, 19, 417.
- 11. (a) Iddon, B.; Scrowston, R. M. <u>Adv. Heterocyclic Chem.</u> 1970, <u>11</u>, 177. (b) Hauptmann, H.; Walter, W. F. <u>Chem. Rev.</u> 1962, <u>62</u>, 347.
- 12. Wenkert, E.; Ferriara, T. W.; Michelotti, E. L. <u>J. Chem. Soc., Chem.</u> <u>Commun.</u> 1979, 637.
- 13. Daly, F. P. <u>J. Catal.</u> 1978, <u>51</u>, 221.

......

- 14. Givens, E. N.; Venuto, P. B. <u>Prep. Am. Chem. Soc., Div. Pet. Chem.</u> 1970, <u>15</u>, A183.
- 15. deBeer, V. H. J.; Dahlmans, J. G. J.; Smeets, J. G. M. <u>J. Catal.</u> 1976, <u>42</u>, 467.

- 16. (a) Geneste, P.; Amblard, P.; Bonnet, M.; Graffin, P. <u>J. Catal.</u> 1980, <u>61</u>, 115. (b) Geneste, P.; Bonnet, M.; Frouin, C.; Levaché, D. <u>J.</u> <u>Catal.</u> 1980, <u>61</u>, 277.
- 17. Levaché, D.; Guida, A.; Geneste, P. <u>Bull. Soc. Chim. Belg.</u> 1981, <u>90</u>, 1285.
- 18. Pokorny, P.; Zdrazil, M. Coll. Czech. Chem. Commun. 1981, 46, 2185.
- 19. Lopez, R.; Peter, R.; Zdrazil, M. J. Catal. 1982, 73, 406.
- 20. Odebunmi, E. O.; Ollis, D. F. J. Catal. 1983, 80, 65.
- 21. Landa, S.; Mrnkova, A. Coll. Czech. Chem. Commun. 1966, 31, 2202.
- 22. Bartsch, R.; Tanielian, C. J. Catal. 1974, 35, 353.
- 23. Furimsky, E.; Amberg, C. H. Can. J. Chem. 1976, 54, 1507.
- 24. Bartsch, R.; Tanielian, C. <u>J. Catal.</u> 1977, 50, 35.
- 25. (a) Rollman, L. D. <u>J. Catal.</u> **1977**, <u>46</u>, 243. (b) Rollman, L. D. <u>Prep.</u> <u>Am. Chem. Soc., Div. Fuel Chem.</u> **1976**, <u>21</u>, 59.
- 26. (a) Kilanowski, D. R.; Teeuwen, H.; deBeer, V. H. J.; Gates, B. C.; Schuit, G. C. A.; Kwart, H. <u>J. Catal.</u> 1978, <u>55</u>, 129. (b) Kilanowski, D. R. Ph.D. Thesis, University of Delaware, Newark, Delaware, 1979.
- 27. Ramachandran, R.; Massoth, F. E. Chem. Eng. Commun. 1982, 18, 239.
- 28. Jones, S. O.; Reid, E. E. J. Amer. Chem. Soc. 1938, 60, 2452.
- 29. Guin, J. A.; Lee, J. M.; Fan, C. W.; Curtis, C. W.; Lloyd, J. L.; Tarrer, A. R. <u>Ind. Eng. Chem. Process Des. Dev.</u> 1980, <u>19</u>, 440.
- 30. Lopez, R. Coll. Czech. Chem. Commun. 1983, 48, 2269.

- Geneste, P.; Guicla, A.; Levache, D. <u>Bull. Soc. Chim. Fr.</u> 1983, <u>5-6</u>, 136.
- 32. Sapre, A. V.; Broderick, D. H.; Fraenkel, D.; Gates, B. C.; Nag, N. K. <u>AIChE Journal</u> 1980, <u>26</u>, 690.
- 33. (a) Espino, R. L.; Sobel, J. E.; Singhal, G. H.; Huff Jr., G. A. <u>Prep. Am. Chem. Soc., Div. Pet. Chem.</u> 1978, 46. (b) Singhal, G. H.; Espino, R. L.; Sobel, J. E. <u>J. Catal.</u> 1981, <u>67</u>, 446.
- 34. (a) Kumar, M.; Akgerman, A.; Anthony, R. G. <u>Ind. Eng. Chem. Process</u> <u>Des. Dev.</u> 1984, <u>23</u>, 88. (b) Hook, B. D.; Akgerman, A. <u>Ind. Eng.</u> <u>Process. Des. Dev.</u> 1985, <u>24</u>, 507.

......

- 35. Van Parijs, I. A.; Hosten, L. H.; Froment, G. F. <u>Ind. Eng. Chem.</u> <u>Prod. Res. Dev.</u> 1986, <u>25</u>, 437.
- 36. Cowley, S. W. Ph.D. Thesis, Southern Illinois University, Carbondale, 1975.
- Obolentsev, R. D.; Mashkina, A. V. <u>Dokl. Akad. Nauk SSSR</u> 1959, <u>131</u>, 1092.
- 38. Yamada, M. Koru Taru 1960, 12, 8. Chem. Abstr. 1964, 60, 11978g.
- 39. Papadopoulos, R.; Wilson, M. J. G. Chem. Ind. 1965, 427.
- 40. (a) Galiasso, R. E. <u>Rev. Port. Quim.</u> 1977, <u>19</u>, 215. (b) Akhtar, S.; Sharkey, Jr., A. G.; Shultz, J. L.; Yavorsky, P. M. <u>Prep. Am. Chem.</u> <u>Soc., Div. Fuel Chem.</u> 1974, <u>19</u>, 207.
- 41. Frye, C. G.; Mosby, J. F. Chem. Eng. Prog. 1967, 63, 66.
- 42. Nag, N. K.; Sapre, A. V.; Broderick, D. H.; Gates, B. C. <u>J. Catal.</u> 1979, <u>57</u>, 509.
- 43. Morooka, S.; Hamrin Jr., C. E. Chem. Eng. Sci. 1979, 34, 521.
- 44. Kilanowski, D. R.; Gates, B. C. J. Catal. 1980, 62, 70.
- 45. Houalla, M.; Broderick, D.; de Beer, V. H. J.; Gates, B. C.; Kwart, H. <u>Prep. Am. Chem. Soc., Div. Pet. Chem.</u> 1977, <u>22</u>, 941.
- 46. (a) Lipsch, J. M. J. G.; Schuit, G. C. A. <u>J. Catal.</u> 1969, <u>15</u>, 179.
 (b) Desikan, P.; Amberg, C. H. <u>Can. J. Chem.</u> 1964, <u>42</u>, 843. (c) Desikan, P.; Amberg, C. H. <u>Can. J. Chem.</u> 1963, <u>41</u>, 1966. (d) Owens, P. J.; Amberg, C. H. <u>Can. J. Chem.</u> 1962, <u>40</u>, 947. (e) Owens, P. J.; Amberg, C. H. <u>Can. J. Chem.</u> 1962, <u>40</u>, 941. (f) Owens, P. J.; Amberg, C. H. <u>Can. J. Chem.</u> 1962, <u>40</u>, 941. (f) Owens, P. J.; Amberg, C. H. <u>Adv. in Chem.</u> Ser. No. 33, 1961, 182. (g) Nickolson, D. E. <u>Anal. Chem.</u> 1962, <u>34</u>, 370. (h) Nickolson, D. E. <u>Anal. Chem.</u> 1960, <u>32</u>, 1365.
- 47. Kwart, H.; Schuit, G. C. A.; Gates, B. C. <u>J. Catal.</u> 1980, <u>61</u>, 128.
- 48. (a) Zdrazil, M. <u>Coll. Czech. Chem. Commun.</u> 1975, <u>40</u>, 3491. (b) Zdrazil, M. <u>Coll. Czech. Chem. Commun.</u> 1977, <u>42</u>, 1484.
- 49. Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. "Chemistry of Catalytic Processes"; McGraw-Hill Book Co.: New York, 1979; p. 424.
- 50. (a) Schoofs, G. R.; Presont, R. E.; Benziger, J. B. Langmuir 1985, 1, 313. (b) Edwards, T.; McCarroll, J. J.; Pilkethly, R. C. Ned. <u>Tijdschr. Vacuumtech.</u> 1970, 8, 162. (c) Sexton, B. A. <u>Surf. Sci.</u> 1985, <u>163</u>, 99.

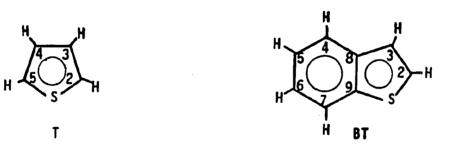
المنا والمعهودي لي

.....

- 51. Japanese Kokai Patent 47/33080 [7,233,080], 16 Nov. 1972. Chem. Abstr. 1972, 78, 111111s.
- 52. Kameyama, H.; Amano, A. <u>Sekiyu Gakkaishi</u> 1982, <u>25</u>, 118. <u>Chem. Abstr.</u> 1982, <u>97</u>, 87562.
- 53. Gissy, H.; Bartsch, R.; Tanielian, C. <u>J. Catal.</u> 1980, <u>65</u>, 150.
- 54. Gissy, H.; Bartsch, R.; Tanielian, C. J. Catal. 1980, 65, 158.
- 55. Bouassida, A.; Tanielian, C. J. Less Common Metals 1981, 81, 207.
- 56. Hillerova, E.; Lopez, R.; Maternova, J.; Peter, R.; Zdrazil, M. <u>Coll.</u> <u>Czech. Chem. Commun.</u> 1984, <u>49</u>, 29.
- 57. Cowley, S. W.; Massoth, F. E. J. Catal. 1978, 51, 291.
- 58. Collins, G. M.; Hess, R. K.; Akgerman, A. <u>Chem. Eng. Commun.</u> 1985, <u>35</u>, 281.

SECTION II. Ru, Rh, AND Ir COMPLEXES OF π-BOUND THIOPHENE AND BENZO[b]THIOPHENES: MODELS FOR THIOPHENE BINDING TO HDS CATALYSTS¹

.


.

.....

INTRODUCTION

The process of catalytic hydrodesulfurization (HDS) is performed industrially on a very large scale in order to remove sulfur from crude oils.² Typically, sulfided-cobalt-promoted molybdenum catalysts are used.³ The mechanism of desulfurization has been investigated intensively but in spite of this effort key aspects of HDS such as binding of sulfurcontaining hydrocarbons to the catalyst surface as well as important steps in the HDS process are not well understood.⁴

Thiophene (T) has frequently been used as a representative sulfurcontaining compound in mechanistic investigations involving heterogeneous reactor studies.⁵ It serves as a good model because it is difficult to desulfurize, presumably as a result of the aromatic stabilization provided by the delocalized π -system.⁶ However, studies of other aromatic

compounds, such as benzo[b]thiophenes (BTs: benzo[b]thiophene, BT; 3-methylbenzo[b]thiophene, 3-MeBT; 2,3-dimethylbenzo[b]thiophene, 2,3-Me₂BT), have also been reported.^{6,7} For both T and BTs, π -bonding of the aromatic system to a metal site on the surface of the catalyst, as opposed to the frequently proposed S-coordination, has been suggested.⁸ The π -bonded proposal is supported by heterogeneous reactor studies.^{2b,8d,9} In the case of T, results of recent spectroscopic¹⁰ and

discrete transition metal model complex¹¹ studies also support the π -bound adsorption mode.

Therefore, in order to learn more about the process of HDS our group has chosen to explore the reactivity of π -bound T and BTs in model complexes. BTs are of particular interest because they are present in crude oils in significantly greater quantities than $T^{7d,12}$ and have been reported to be more difficult to desulfurize.¹³ Since BTs are made up of two fused aromatic rings, they offer the possibility of forming π -complexes with transition metals by coordination of either one or both of these rings.

The syntheses of a number of π -thiophene complexes have been reported,¹⁴ but only two of BT are known. In Cr(CO)₃(π^{6} -BT)¹⁵ the BT was proposed, on the basis of ¹H NMR data, to be coordinated through the benzene ring. King and Stone^{15b} reported the preparation of Fe₂(CO)₅(BT) in 1960. They proposed that Fe(CO)₂ and Fe(CO)₃ groups are coordinated to both rings of the BT ligand.

Sulfur-coordinated complexes of T^{16} and very recently BT^{16C} have also been reported. However, the S-bound T and BT ligands are easily displaced by coordinating solvents or CO and have not been reported to undergo any reactions.

In this publication we describe the synthesis and characterization of Ru, Rh, and Ir complexes containing π -bound T and BTs. The [Cp*ML](A)₂ (M

= Rh, Ir; L = T, BTs; Cp* = $n-C_5Me_5$; A = PF₆,BF₄) complexes are the first dicationic of either T or BTs. Previously reported attempts to prepare Rh and Ir compounds of unsubstituted T were unsuccessful.^{14d} The first X-ray structure determination of a BT complex is also discussed.

EXPERIMENTAL SECTION

All reactions were performed under N_2 in General Procedures reagent grade solvents. Methylene chloride (CH_2Cl_2) was dried over CaH_2 and distilled. Diethyl ether (Et₂0) was distilled from Na/benzophenone, and dichloroethane (DCE) was distilled from P_2O_5 . The solvents were stored over 4-Å molecular sieves, except for acetone which was stored over $MgSO_4$, and purged with N_2 prior to use. Commercial T and 3-MeBT were stirred with AgNO₃ (0.01 g/mL) for 24 h, decanted, and then distilled. Commercial BT was sublimed prior to use. The 2,3-Me₂BT,¹⁷ [Cp*IrCl₂]₂(Cp*=n-C₅Me₅),¹⁸ [Cp*RhCl₂]₂,¹⁸ CpRu(PPh₃)₂Cl(Cp=n-C₅H₅),¹⁹ and $[CpRu(NCCH_3)_3]PF_6^{20}$ can be prepared by literature methods. The products were all characterized by elemental analysis (Table 2.4), 1 H, and 13 C NMR (Tables 2.5 and 2.6). 1 H, 13 C, and 1 H- 13 C 2D NMR spectra were obtained on a Nicolet NT-300 spectrometer using deuterated solvents as internal locks and referenced to $Si(CH_3)_A$. Conductivity data were obtained using a Markson Electromark analyzer and calibrated with a standard potassium chloride solution. Fast Atom Bombardment (FAB) spectra were run on a Kratos MS-50 mass spectrometer. Elemental analyses were performed by Galbraith Laboratories, Inc.

[CpRu(BT)]A(A=PF₆ or BF₄), 1 This complex was prepared by using either CpRu(PPh₃)₂Cl or [CpRu(NCCH₃)₃]PF₆ as described in Methods A and B respectively. <u>Method A</u>: To a solution of CpRu(PPh₃)₂Cl (0.52 g', 0.71 mmol) in CH₃OH (2 mL) was added BT (1.9 g, 14 mmol), and AgBF₄ (0.21 g, 1.1 mmol). The mixture was refluxed for 39 h. The solution was filtered

and then evaporated to dryness. The residue was extracted with CH_2C1_2 and the product precipitated by addition of Et₂0. Numerous recrystallizations from CH₂Cl₂/Et₂O were required to remove impurities resulting in a low yield (<15%) of the ivory colored product, 1 (A=BF $_4$). FAB (glycerol), m/e 301(M⁺). Method B: BT (1.89 g, 14.1 mmol) was added to a solution of [CpRu(NCCH₃)₃]PF₆ (0.400 g, 0.921 mmol) in DCE (20 mL). The solution was refluxed under ${\rm N}_2$ for 21.5 h and then evaporated to dryness in vacuo. The brown residue was extracted with acetone. Addition of Et₂O resulted in precipitation of the tan-colored product: yield, 0.318 g (77.5%). The product was purified by stirring in 10 mL of a 0.95 M solution of KOH in $CH_{2}OH$ for 12 h. A stream of CO_{2} was passed through the solution for 1.5 h and the resulting suspension evaporated to dryness in vacuo. The residue was extracted with acetone $(4 \times 10 \text{ mL})$ and filtered. The volume of the filtrate was reduced to approximately 5 mL followed by addition of Et₂0 to precipitate the ivory colored product, $1 \text{ (A=PF}_6)$. The purification step generally decreases the yield by approximately 15-20%.

[CpRu(3-MeBT)]PF₆, 2 This complex was prepared analogously to 1 using Method B. The 3-MeBT (2.74 g, 18.5 mmol) was added to $[CpRu(NCCH_3)_3]PF_6$ (0.532 g, 1.22 mmol) in DCE (30 mL) and refluxed for 24 h. The solution was evaporated to dryness in vacuo and extracted with acetone (2 x 10 mL). The resulting solution was filtered, the volume reduced in vacuo, and the tan product was precipitated by addition of Et₂0: yield, 0.501 g (89.4%). The purified pale yellow product was isolated after stirring in KOH/CH₃OH as for 1. $[Cp*Rh(T)](PF_6)_2$, 3 To a stirred solution of $[Cp*RhCl_2]_2$ (70.4 mg, 0.114 mmol) in acetone (4 mL) was added AgPF₆ (121 mg, 0.480 mmol). The solution was stirred 5 min and filtered through Celite into a flask containing T (3.0 mL, 3.2 g, 38 mmol). The volume of the solution was reduced to 4 mL in vacuo. After stirring for 2 min, CH₂Cl₂ (20 mL) was added, and the resulting cream-colored solid was filtered, washed with additional CH₂Cl₂, and dried in vacuo: yield, 79.3 mg (56.8%).

 $[Cp*Rh(BT)](PF_6)_2$, 4 This complex was synthesized in the same manner as 3 using $[Cp*RhCl_2]_2$ (0.15 g, 0.24 mmol), AgPF₆ (0.24 g, 0.96 mmol) and BT (0.33 g, 2.4 mmol). The product, 4, was isolated as a pale yellow solid: yield, 0.21 g (65%).

[Cp*Ir(T)](BF₄)₂, 5 To a solution of [Cp*IrCl₂]₂ (0.440 g, 0.552 mmol) in acetone (5 mL) was added AgBF₄ (0.430 g, 2.21 mmol), and the resulting mixture was filtered through Celite. The volume of the filtrate was reduced to 3 mL and T (1.6 mL, 1.7 g, 20 mmol) was added. The solution was refluxed for 5 min and then cooled to room temperature. A slightly gray solid was produced by addition of CH₂Cl₂. The gray solid was filtered from the solution and then dissolved in CH₃NO₂. The CH₃NO₂ solution was filtered to remove a black insoluble impurity. Addition of CH₂Cl₂ to the filtrate gave the product, 5, as a white solid which was separated by filtration and dried in vacuo: yield, 0.453 g (70.1%). This complex is slightly moisture sensitive and should be stored in a sealed container in a desiccator. $\Lambda_{\rm m}$ (mho cm² mol⁻¹, 1.02 x 10⁻³ M in CH₃NO₂): 165. [Cp*Ir(BT)](BF₄)₂, 6 This complex was prepared in the same manner as 5. A solution of $[Cp*IrCl_2]_2$ (0.452 g, 0.568 mmol) in acetone (15 mL) was treated with AgBF₄ (0.446 g, 2.29 mmol), filtered, and refluxed with BT (3.09 g, 23.0 mmol) for 10 min. The white product, 6, was isolated from the reaction mixture by addition of CH_2Cl_2 : yield, 0.591 g (81.9%). This reaction was also performed using AgPF₆ and without refluxing but the yields are lower (~50%). Λ_m (mho cm² mol⁻¹, 1.01 x 10⁻³ M in CH₃NO₂): 179.

[Cp*Ir(3-MeBT)](BF₄)₂, 7 The synthesis proceeds as for 5 using [Cp*IrCl₂]₂ (0.300 g, 0.377 mmol), AgBF₄ (0.294 g, 1.51 mmol), and 3-MeBT (1.47 g, 9.96 mmol). A pale yellow product, 7, was isolated: yield, 0.394 g (80.6%). $\Lambda_{\rm m}$ (mho cm² mol⁻¹, 1.05 x 10⁻³ M in CH₃NO₂): 182.

 $[Cp*Ir(2,3-Me_2BT)](BF_4)_2, 8 This complex was prepared analogously to 5 from [Cp*IrCl_2]_2 (0.202 g, 0.254 mmol), AgBF_4 (0.198 g, 1.02 mmol), and 2,3-Me_2BT (1.01 g, 6.22 mmol) to give a pale yellow product: yield, 0.229 g (68.0%).$

X-ray Structure Determination of $[CpRu(BT)]BF_4$, 1 Gold-colored crystals of 1 were grown from CH_2Cl_2/Et_2O . A crystal of approximate dimensions 0.45 x 0.05 x 0.05 mm was mounted on the end of a glass fiber using Duco cement and attached to a standard goniometer head. The crystal was aligned on a four-circle Datex X-ray diffractometer from which four preliminary ω -oscillation photographs were taken at various ϕ settings. The approximate positions of 20 reflections were selected from these photographs and used as input into an automatic indexing program.²¹ The resulting reduced cell and reduced cell scalars indicated a monoclinic lattice. Observed layer spacings from three axial ω -oscillation photographs were within experimental error of those predicted for this cell.

Accurate unit cell parameters were obtained by a least squares fit to \pm 20 values of 25 independent high angle reflections on a previously aligned four-circle diffractometer at room temperature using graphitemonochromated MoKa radiation. The data were collected using a four-circle fully automated Datex diffractometer which was interfaced to a VAX 730 computer in a real time mode. An empirical absorption correction was made²² (μ = 12.80 cm⁻¹) where the maximum and minimum trans mission factors were 0.995 and 0.886, respectively. Further details concerning the data collection are given in Table 2.1.

The position of the Ru atom in 1 was obtained from an analysis of a standard sharpened three-dimensional Patterson map. The positions of the remaining nonhydrogen atoms were determined by successive structure factor²³ and electron density map calculations.²⁴ The positional and anisotropic thermal parameters for the nonhydrogen atoms were refined initially by block-matrix and finally by full-matrix least-squares procedures,²³ minimizing the function $\sum \omega (|F_0| - |F_c|)^2$ to a conventional residual index of $R = \sum ||F_0| - |F_c||/\sum |F_0| = 0.048$ and a weighted residual index of $R_w = [\sum \omega (|F_0| - |F_c|)^2 / \sum \omega |F_0|^2]^{1/2} = 0.062$, $\omega = 1/\sigma_F^2$. The hydrogen positions were calculated and not refined. The final positional and thermal parameters for 1 are listed in Table 2.2. The bond lengths

formula	BC ₁₃ F ₄ H ₁₁ RuS
mol wt, g mol ⁻¹	387.17
crystal system	monoclinic
space group	P2 ₁ /c
a, Å	8.882(2)
b, Å	11.034(1)
c, Å	13.936(2)
в, deg	94.60(1)
V, Å ³	1361.5
Z	4
D(calcd), g cm ⁻³	1.85
μ (ΜοΚα), cm ⁻¹	12.80 (correction applied)
T _{min} /T _{max}	0.886/0.995
temperature, °C	20
Radiation (graphite monochromated)	ΜοΚα (λ = 0.71032)
Reflection Measured ·	hkl, hkl, ĥkl, hkl (4 octants)
Scan Type	ω-stepscan
Max 20, deg	50
Standard reflections	 measured every 50 reflections (no observed decay)
Reflections collected	4764
Reflections observed $(I \ge 3\sigma(I))$	3897
Reflections after averaging	1748
R (ave)	0.028
R (conventional)	0.048
R (weighted)	0.062

Table 2.1. Crystal parameters for the X-ray diffraction study of [CpRuBT]BF4, 1

Atom	x	У	z	B(ave) ^a
Ru	2282.0(6)	2208.4(5)	395.0(4)	49
S	3119(3)	5153(2)	-595(2)	84
C2	1794(16)	4767(11)	-1516(6)	103
C3	777(6)	40 97(5)	-1400(4)	38
C4	-57(7)	2915(7)	157(6)	60
C5	306(9)	2711(7)	1153(6)	70
C6	1606(11)	3208(8)	1634(5)	71
C7	2572(9)	3955(7)	1168(6)	65
C8	891(7)	3707(6)	-315(4)	48
C9	2190(7)	4239(6)	175(5)	54
210	3742(11)	1417(8)	-601(6)	80
211	4549(9)	1495(8)	274(7)	79
212	3825(11)	796(8)	950(7)	82
213	2565(13)	265(7)	436(8)	92
214	2505(11)	634(8)	-519(7)	81
3	6812(13)	2311(8)	2788(7)	72
-1	7342(8)	1510(7)	2168(5)	124
-2	5815(7)	3123(6)	2378(5)	107
-3	8076(10)	2972(6)	3145(6)	124
4	6249(17)	1751(10)	3511(9)	229

Table 2.2. Positional (X 10^4) and thermal parameters (Å², X 10^3) for [CpRu(BT)]BF₄, 1

^aGiven in the form of the isotropic displacement equivalent displacement parameter defined as $4/3[a^2B_{11} + b^2B_{22} + c^2B_{33} + ab(cos_{\gamma}B_{12}) + ac(cos_{\beta})B_{13} + bc(cos_{\alpha})B_{23}]$.

and the bond angles are listed in Table 2.3. An $ORTEP^{25}$ drawing of the molecule is given in Figure 2.1.

Residual electron density near C3 indicated a possible structural disorder. Attempts to model the disorder by introducing disorder partners of C2, C3, and S, constrained to either a 2-fold axis or a mirror plane perpendicular to the C8-C9 bond, converged to an occupancy ratio of 80:20. However, the residual indices, the C2-C3 bond distance, and the C2 thermal ellipsoid did not improve. In an independent study²⁶ the occupancies of these three atoms and their disorder partners were allowed to refine without constraints. However, the pairs of atoms converged to their mean positions.

The data were, therefore, reweighted based on $\sin(\theta)/\pi$ such that $\omega\Delta^2$, $\Delta = |F_0| - |F_c|$, was approximately constant and further refined. The parameters listed in Tables 2.1, 2.2, and 2.3 are for the structure refined without consideration of the disordering.

Bond Distances (Å)					
RuC4	2.219(7)	C4-C5	1.418(11)		
Ru-C5	2.191(8)	C5-C6	1.400(12)		
Ru-C6	2.174(8)	C 6 -C7	1.389(12)		
Ru-C7	2.213(8)	C7-C9	1.432(10)		
Ru-C8	2.246(6)	C8-C9	1.420(9)		
Ru–C9	2.262(7)	C10-C11	1.367(13)		
Ru-C10	2.159(9)	C10-C14	1.410(13)		
Ru-C11	2.182(8)	C11-C12	1.412(13)		
Ru-C12	2.176(9)	C12-C13	1.407(14)		
Ru-C13	2.159(8)	C12-C14	1.388(15)		
Ru-C14	2.172(9)				
S-C2	1.724(11)				
S-C9	1.730(7)				
C2-C3	1.188(14)				
C3-C8	1.568(8)				
C4-C8	1.412(9)				
	Bond A	Angles (°)			
S-C2-C3	122.3(7)	C7-C9-S	129.7(5)		
C2-C3-C8	108.1(6)	C3-C8-C4	128.6(6)		
C3-C8-C9	109.7(5)	C10-C11-C12	109.1(8)		
C8-C9-S	110.6(5)	C11-C12-C13	105.9(9)		
C9-S-C2	89.2(4)	C12-C13-C14	109.5(9)		
C4-C5-C6	121.4(7)	C13-C14-C15	106.7(9)		
25-C6-C7	121.7(7)	C14-C15-C10	108.8(8)		
C6-C7-C9	118.3(7)				
27-09-08	119.6(6)				
:9- C8-C4	121.6(6)				
C8-C4-C5	117.2(6)				

and a state of the state of the

Table 2.3. Bond distances and angles for $[CpRu(BT)]BF_4$, 1

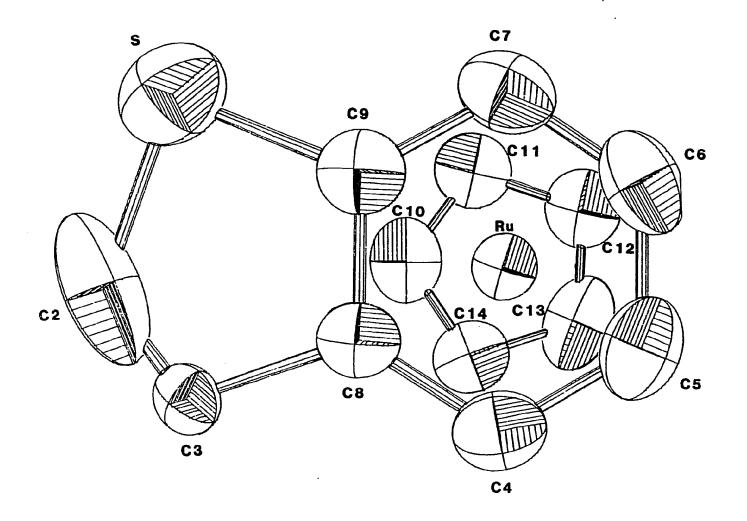


Figure 2.1. An ORTEP drawing of [CpRu(BT)]BF₄, 1

;

RESULTS AND DISCUSSION

[CpRu(BT)]A (A=BF₄, PF₆) and [CpRu(3-MeBT)]PF₆, 1 and 2 The reaction of either CpRu(PPh₃)₂Cl or [CpRu(NCCH₃)₃]PF₆ with BT results in the formation of [CpRu(BT)]⁺ as shown in eq. 1.

Method A:
$$CpRu(PPh_3)_2C1$$

AgBF₄
[CpRu(BT)]A (A=BF₄, PF₆)(1)
1

<u>Method B</u>: $[CpRu(NCCH_3)_3]PF_6$ A,DCE, 21.5 h,BT The 3-MeBT complex, 2, is synthesized analogously using Method B. Method B is preferred due to the higher yield and purer product which results. Gill and Mann²⁰ have used this method to synthesize a variety of other $CpRu(n^6-arene)^+$ complexes. The complexes 1 and 2 are air stable in the solid state. The BT and 3-MeBT ligands are not displaced by coordinating solvents such as acetone, methanol or water at room temperature over 24 h.

Complex 1 was identified by its elemental analysis, 1 H and 13 C NMR spectra (Tables 2.4, 2.5, and 2.6). The 1 H NMR spectrum was assigned using the results of selective decoupling, 1 H- 13 C 2D, and gated-decoupled 13 C NMR experiments. The initial step in assigning the 1 H NMR spectrum was obtaining the gated-decoupled 13 C NMR spectrum (d₆-acetone) which showed only one resonance as a simple doublet of doublets. This could clearly be only the C2 peak because it is split only by H2 (1 J_{C2-H2}=189 Hz) and H3 (3 J_{C2-H3}= 7 Hz). From the 1 H- 13 C 2D NMR spectrum the H2 peak could then be assigned. The H3 resonance was identified by selectively decoupling H2. The H7 peak was assigned by observation of long range

	% C (calc)	% H (calc)
[CpRu(BT)]BF ₄ , 1	40.44 (40.33)	2.86 (2.86)
[CpRu(3-MeBT)]PF ₆ , 2	36.62 (36.61)	2.84 (2.85)
[Cp [*] Rh(T)](PF ₆) ₂ , 3	27.51 (27.41)	3.34 (3.13)
$[Cp^{*}Rh(BT)](PF_{6})_{2}, 4$	32.72 (32.64)	3.51 (3.20)
$[Cp^{*}Ir(T)](BF_{4})_{2}, 5$	28.47 (28.74)	3.22 (3.27)
[Cp [*] Ir(BT)](PF ₆) ₂ , 6	28.54 (28.77)	2.53 (2.82)
[Cp [*] Ir(3-MeBT)](BF ₄) ₂ , 7	34.82 (35.15)	3.57 (3.57)
[Cp [*] Ir(2,3-Me ₂ BT)](BF ₄) ₂ , 8	36.27 (36.22)	4.04 (3.80)

•

•

.....

· • ·

Table 2.4. Elemental analyses of the complexes

.

.

....

.

Compound	H2	H3	H4	H5
1 ^a	8.16 d ^b	7.46 d ^b	7 . 26 d	6.32 t
2 ^a	7.75 q ^C		7.08 d	6.29 t
3 ^e	7.51 m	7.65 m	7.65 m	7.51 m
4 ^e	8.88 d ^f	7.71 d ^f	7 .96 m	7.35 m
5 ^e	7.55 m	7.60 m	7.60 m	7.55 m
6 ^e	8.83 d ^g	7.61 d ^g	8.01 m	7.37 m
7 ^e	8.41 q ^h		7.94 m	7.37 m
8 ^e			7.82 d	7.28 m
Te	7.43 m	7 . 15 m	7.15 m	7.43 m
BT ^{a,j}	7 .6 1 d	7.41 d	7.87 m	7.37 m
3-MeBT ^e	7 . 19 q		7.78 dd	7.38 to
,3-Me ₂ BT ^e			7.63 d	7.29 m

Table 2.5. 1 H NMR data for the complexes

 a_{d_6} -acetone. $b^3 J_{H2H3} = 5.8 Hz.$ $c^4 J_{H2-CH_3}=0.8 Hz.$ $d_{C3-CH_3}.$ $e_{CD_3NO_2}.$ $f^3 J_{H2H3} = 5.6 Hz.$ $g_{J_{H2H3}} = 5.7 Hz.$ $h_{J_{H2-CH_3}} = 1.0 Hz.$ $i_{C2-CH_3}.$ $j_{Reference 27.}$

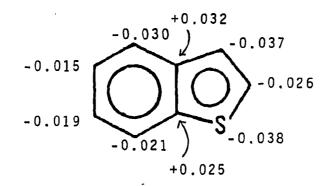
H6	Н	Ср	Cp*	Other
6.37 t	7.55 d	5.22 s		
6.36 t	7.49 d	5.22 s		2.48 d ^{c,d}
			2.35 s	
7.35 m	8.14 m		2.03 s	
			2.50 s	
7.37 m	8.19 m		2.12 s	
7.37 m	8.16 m		2.12 s	2.58 d ^{h,d}
7.28 m	8.04 d		2.17 s	2.88 s ⁱ , 2.47 s ^d
7.35 m	7.95 m			
7.45 td	7.90 dd			2.45 d
7.37 m	7.78 m			2.48 s, 2.30 s

Compound	C2	C3	C4	C5	C6
1 ^a	137.7	123.7	81.6	84.4	83.9
2 ^a	132.3	131.4	81.6	84.1	83.8
3 ^C	107.1 d ^d	110.3 d ^e	110.3 d ^e	107.1 d ^d	
4 ^C	147.7	122.4	103.3	103.6 d ^g	102.4 d ^h
5 ^C	95.0	101.3	101.3	95.0	
6 ^C	148.6	121.8	93.8	95.9	94.7
7 ^C	141.8	131.6	94.0	95.5	94.6
8 ^C	157.9	125.9	93.1	95.2	93.8
_⊤ a,k	125.6	127.3	127.3	125.6	
BT ^{l,m}	126.2	123.8	123.6	124.1	124.2
3-MeBT ^{1,m}	121.4	132.0	1 21.6	123.7	124.0
2,3-Me ₂ BT ^{1,m}	133.6	127.9	121.0	123.7	123.3

.

Table 2.6. ^{13}C $\{^{1}\text{H}\}$ NMR data for the complexes

^ad₆-acetone. ^bC3- CH_3 . ^cCD₃NO₂. ^dJ_{Rh-C} = 4.0 Hz. ^eJ_{Rh-C} = 2.7 Hz. ^fJ_{Rh-C} = 9.1 Hz. ^gJ_{Rh-C} = 3.6 Hz. ^hJ_{Rh-C} = 3.1 Hz. ⁱJ_{Rh-C} = 8.4 Hz. ^jC2- CH_3 . ^kReference 28. ¹CDC1₃. ^mReference 29.


C7	C8 [*]	C9	^C ₅ ^H ₅	^C ₅ (CH ₃) ₅	с ₅ (с́H ₃) ₅	Other
81.3	106.2	110.2	81.6			
79.9	105.8	110.9	81.3			13.3 ^b
				114.3 d ^f	11.3	
.02.6	122.4	126.4		112.1 d ⁱ	9.7	
				107.7	10.7	
93.4	117.3	121.2		105.7	9.2	•
91.8	116.7	121.3		105.4	9.3	13.7 ^b
90.8	118.9	125.9		105.2	9.3	15.6 ^j ,11.5 ^b
.22.4	139.6	139.7				
22.6	139.6	140.2				13.8
21.9	140.0	138.0				13.6, 11.2

.

 H_3-H_7 (${}^5J_{H_3H_7} = 0.7$ Hz) coupling³⁰ in a dilute solution (~1 mg/0.30 mL) of 1 in d₆-acetone. The use of a dilute solution resulted in enhanced resolution in the ¹H NMR spectrum; this H_3-H_7 coupling was not usually observed. The H₄, H₃, and H₆ resonances were then assigned on the basis of further selective decoupling experiments.

For BT two coordination modes are possible; coordination of either the benzene or thiophene ring would result in 6 e⁻ donation to Ru. A comparison of the ¹H NMR shifts for 1 with those for uncoordinated BT suggests that it is bound in an n^6 fashion through the benzene ring as proposed for Cr(CO)₃(BT).¹⁵ The H2 and H3 resonances for Cr(CO)₃BT shift downfield with respect to the free ligand while those of H4, H5, H6, and H7 shift upfield. This was also observed for 1. In general, upfield shifts are observed upon coordination of arenes to neutral or cationic transition metal centers.¹⁸ However, to clearly identify the coordination mode, in addition to learning more about the structural effects of coordination on the BT ligand, an X-ray diffraction study of 1 was undertaken.

The crystal structure of 1 (Figure 2.1) shows that the benzo portion of the ligand is coordinated to the metal. The $Ru-C_8C_9$, $Ru-C_4C_7$, and $Ru-C_5C_6$ distances show evidence of ring slippage which has been observed in other transition metal complexes containing fused arene ring ligands (napthalene, phenanthrene, anthracene, octamethylnapthalene).³¹ The slipped distance (the average $Ru-C_8C_9$ distance minus the average $Ru-C_5C_6$ distance) for 1 is 0.07 Å; in other complexes slippage from 0.03 to 0.12 Å has been observed. One explanation offered for this phenomenon is that slippage allows the uncoordinated ring to retain more of its aromatic character, but it has also been suggested that the junction carbons cannot interact as effectively with the metal because they are already π -bonded to three other atoms.^{31a} CNDO molecular orbital calculations of the localized charges for each of the carbon atoms and sulfur have been reported. These results, shown below, suggest that there is less electron density available at C8 and C9 for bonding to Ru.³² The BT and

Cp rings are, within experimental error, parallel (Table 2.7). The atoms in the BT ligand show slight deviations (≤ 0.034 Å) from planarity.

Comparison of the ¹H NMR shifts of the 3-MeBT ligand of 2 to those for uncoordinated 3-MeBT and 1 (Table 2.5) suggests that the ligand is bound via the benzene ring. Thus, the H2 and C3-CH₃ resonances move downfield relative to free 3-MeBT while those for H4-H7 move upfield.

Preparation of $[Cp*Rh(T)](PF_6)_2$, 3, and $[Cp*Rh(BT)](PF_6)_2$, 4 Complex 3 was prepared in 56.8% yield from $[Cp*RhCl_2]_2$, AgPF₆, and T as shown in eq. 2.

Rings	Interplanar Angles (deg)	
1, 2	178.38	
1, 3	179.47	
1, 4	178.86	
2,3	1.47	
2,4	0.60	
3, 4	0.88	

.

. .

.

Table 2.7. Interplanar angles for $[CpRu(BT)]BF_4$, 1^a

.

^aRing 1: C10, C11, C12, C13, C14; Ring 2: C4, C5, C6, C7, C8, C9; Ring 3: S, C2, C3, C8, C9; Ring 4: Ring 2 + Ring 3.

$$\left[Cp*RhCl_{2} \right]_{2} + 4 AgPF_{6} \frac{acetone}{xs T} > 2\left[Cp*Rh(T) \right] (PF_{6})_{2} + 4 AgCl \qquad (2)$$

The $[Cp*RhCl_2]_2$ and $AgPF_6$ react to form $[Cp*Rh(acetone)_3](PF_6)_2$ which was previously reported by White et al. and has been used to synthesize other Cp*Rh (arene) dications.³³ The Rh complexes are air stable as solids. However, the T and BT ligands are easily displaced by acetone (both in less than 15 min). They are relatively stable in nitromethane (3, at least 1 h; 4, 12 h).

The ¹H NMR of 3 shows a downfield shift of the thiophene protons relative to free T (Table 2.8) as has been observed for other dicationic arene complexes.³³ The BT protons of 4 also shift downfield relative to the free ligand. However, the H2 and H3 resonances show large downfield shifts, H4 and H7 shift to slightly lower field, and H5 and H6 show little change relative to uncoordinated BT.

 $Cp*IrL^{2+}$ (L = T,BT,3-MeBt and 2,3-Me₂BT), 5-8 The preparation of 5 from $[Cp*Ir(acetone)_3](BF_4)_2$ proceeds analogously to that of 3 shown in eq. 2. This method has been used by White et al. to synthesize other Ir arene dications.³³ For the Rh complexes refluxing had little effect on the yield, but for Ir the yield is increased approximately two-fold when the reactions are refluxed. The complexes 6-8 are synthesized in a similar manner.

The compounds 5-8 have all been characterized by 1 H and 13 C NMR as well as elemental analysis (Tables 2.4, 2.5, and 2.6). The solids are all

Compound	^H 2,5	^H 3,4
Cr(CO) ₃ (T) ^{a,b}	5.37	5.59
Cr(CO) ₃ (T) ^{a,b} CpRu(T) ^{+,c,d}	6.50	6.57
re	7.43	7.15
Cp [*] Rh(T) ^{2+,e}	7.51	7.65
Cp [*] Rh(T) ^{2+,e} Cp [*] Ir(T) ^{2+,e}	7.55	7.60

Table 2.8. A comparison of $^1{\rm H}$ NMR shifts for uncoordinated and $\pi\text{-bound}$ T (ppm)

^aReference 14g.

^bCDC1₃.

^cd₆-acetone.

^dReference 11b.

eCD3NO2.

air stable, but 5 is extremely moisture sensitive. The Ir complexes are much more stable than the Rh analogs towards ligand displacement. Acetone displaces T from 5 in approximately 2 h at room temperature while 6 will not lose BT even after 12 h in acetone.

The ¹H NMR spectra of **6-8** suggest that coordination occurs through the benzene ring of BT, 3-MeBT and 2,3-Me₂BT. Thus, the H2, H3, C2- CH_3 and C3- CH_3 , resonances move further downfield relative to the free ligand upon coordination to Ir, than those of H4-H7 (Table 2.5).

.

CONCLUSION

In all of the Ru, Rh, and Ir complexes the BTs coordinate through the π -system of the benzene ring as in Cr(CO)₃(BT).¹⁵ Even in the case of 2,3-Me₂BT, where the presence of two electron donating methyl groups might be expected to promote thiophene coordination, the benzene ring was bound.

All of the metals used in these complexes are active HDS catalysts.³⁴ We are exploring the reactivities of these complexes as possible models for reactions of π -bound T and BTs on catalysts in the HDS process.

REFERENCES

- Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract No. W-7405-Eng-82. This research was supported by the Office of Basic Energy Sciences, Chemical Sciences and Materials Sciences Division.
- 2. (a) Houalla, M.; Nag, N. K.; Spare, A. V.: Broderick, D. H.; Gates, B. C. <u>AIChE Journal</u> 1978, 24, 1015. (b) Houalla, M.; Broderick, D. H.; Sapare, A. V.; Nag, N. K.; de Beer, V. H. J.; Gates, B. C.; Kwart, H. <u>J. Catal.</u> 1980, 61, 523.
- 3. Gates, C. B.; Katzer, J. R.; Schuit, G. C. A. "Chemistry of Catalytic Processes"; McGraw-Hill Book Co.: New York, 1979; p. 393.
- 4. (a) Massoth, F. E.; Murali Dhar, G. "Proceedings, Climax 4th Int. Conf. on the Chemistry and Uses of Mo" (Barry, P. C.; Mitchell, P. C. H. eds.), p. 343, Climax Molyb. Co.; Ann Arbor, Mich., 1985. (b) Zdrazil, M. Appl. Catal. 1982, 4, 107.
- 5. (a) Smith, G. V.; Hinckley, C. C.; Behbahany, F. J. Catal. 1973, 30, 218. (b) Schuit, G. C. A.; Gates, B. C. <u>AIChE Journal</u>, 1973, 19, 417. (c) Pazos, J. M.; Andrév, P. <u>Can. J. Chem.</u> 1980, 58, 479.
- 6. Pokorny, P.; Zdrazil, M. Coll. Czech. Chem. Commun. 1981, 46, 2185.
- 7. (a) Collins, G. M.; Hess, R. K.; Akgerman, A. <u>Chem. Eng. Commun</u>. 1985, <u>35</u>, 281. (b) Lopez, R.; Peter, R.; Zdrazil, M. <u>J. Catal</u>. 1982, <u>73</u>, 406. (c) Levache, D.; Geneste, G. P. <u>Bull. Soc. Chim.</u> <u>Belg.</u> 1981, <u>90</u>, 1285. (d) Geneste, P.; Amblard, P.; Graffin, P. <u>J.</u> <u>Catal</u>. 1980, <u>61</u>, 115.
- 8. (a) Tsai, M. C.; Meutterties, E. L. <u>J. Phys. Chem.</u> 1982, 86, 5067.
 (b) Zdrazil, M. <u>Coll. Czech. Commun.</u> 1977, 42, 1484. (c) Zdrazil, M. <u>Coll. Czech. Commun.</u> 1975, 40, 3491. (d) Cowley, S. W. Ph.D. Thesis, Southern Illinois University, 1975, Carbondale. (e) Kwart, H.; Schuit, G. C. A.; Gates, B. C. <u>J. Catal.</u> 1980, 61, 128.
- 9. Singhal, G. H.; Espino, R. L.; Sobel, J. E.; Huff Jr., G. A. <u>J.</u> <u>Catal</u>. 1981, <u>67</u>, 457.
- (a) Edwards, T.; McCarroll, J. J.; Pilkethly, R. C. <u>Ned. Tijdschr</u>. <u>Vacuumtech.</u> 1970, 8, 162. (b) Schoofs, G. R.; Presont R. E.; Benziger, J. B. <u>Langmuir</u> 1985, 1, 313.

. . .

.

.....

- 11. (a) Lesch, D. A.; Richardson, J. W.; Jacobson, R. A.; Angelici, R. J. J. Am. Chem. Soc. 1984, 106, 2901. (b) Spies, G. H.; Angelici, R. J. J. Am. Chem. Soc. 1985, 107, 5569. (c) Hachgenei, J. W.; Angelici, R. J. Angew. Chem., accepted for publication. (d) Spies, G. H.; Angelici, R. J. Organometallics, accepted for publication. (e) Sauer, N. N.; Angelici, R. J. Organometallics, accepted for publication. (f) Huckett, S. C.; Sauer, N. N.; Angelici, R. J. Organometallics 1987, 6, 591.
- 12. (a) Thompson, C. J. in "Organic Sulfur Chemistry"; (Freidlina, R. Kh.; Skorova, A. E. eds.); Pergamon Press: New York, 1981; p. 201.
 (b) Aksenov, V. S.; Kamyanov, V. F. in "Organic Sulfur Chemistry"; (Freidlina, R. Kh.; Skorova, A. E. eds.); Pergamon Press: New York, 1981; p. 9.
- Satterfield, C. N. "Heterogeneous Catalysis in Practice"; McGraw-Hill Book Co.: New York, 1980; p. 262.
- 14. (a) Singer, H. J. Organomet. Chem. 1967, 9, 135. (b) Fischer, E. O.; Ofele, K. Chem. Ber. 1958, 91, 2395. (c) Lee, C. C.; Iqbal, M.; Gill, U. S.; Sutherland, R. G. J. Organomet. Chem. 1985, 288, 89. (d) Russell, J. J. H.; White C.; Yates, A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1978, 857. (e) Bachmann, P.; Singer, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1976, 31B, 525. (f) Braitsch, D. M.; Kurnarappan, R. N. J. Organomet. Chem. 1975, 84, C37. (g) Guilard, R.; Tirouflet, J.; Fournari, P. J. Organomet. Chem. 1971, 33, 195. (h) Sanchez-Delgado, R. A.; Puga, J.; Marquez-Silva, R. L.; Tiripicchio, A.; Camellini, M. T. J. Organomet. Chem. 1986, 316, C35.
- 15. (a) Fischer, E. O.; Goodwin, H. A.; Kreiter, C. G.; Simmons Jr., H. D.; Sonogashira, K.; Wild, S. B. <u>J. Organomet. Chem</u>. 1968, <u>14</u>, 359. (b) King, R. B.; Stone, F. G. A. <u>J. Am. Chem. Soc</u>. 1960, <u>82</u>, 4557.
- 16. (a) Kuehn, C. G.; Taube, H. J. Am. Chem. Soc. 1976, <u>98</u>, 689. (b) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1984, <u>276</u>, 55. (c) Goodrich, J. D.; Nickias, P. N.; Selegue, J. P. Abstracts, 193rd National Meeting of the American Chemical Society, Denver, CO, April 5-10, 1987, number 263. (d) Draganjac, M.; Ruffing, D. J.; Rauchfuss, T. Organometallics 1985, 4, 1909.
- 17. Neckers, D. C.; Dopper, J. H.; Wynberg, H. J. Org. Chem. 1970, 1582.
- Kang, J. W.; Moseley, K.; Maitlis, P. M. <u>J. Am. Chem. Soc.</u> 1969, <u>91</u>, 5970.

. . .

.....

- 19. Bruce, M. I.; Windsor, N. J. Aust. J. Chem. 1977, 30, 1601.
- 20. Gill, T. P.; Mann, K. R. Organometallics 1982, 1, 485.

- 21. Jacobson, R. A. <u>J. Appl. Crystallogr</u>. **1976**, <u>9</u>, 115.
- 22. Karcher, B. A. Ph.D. Thesis, Iowa State University, 1981, Ames.
- 23. Lapp, R. L.; Jacobson, R. A.; U.S. Department of Energy Report IS-4708; Ames Laboratory, Iowa State University: Ames, Iowa, 1979.
- 24. Powell, D. R.; Jacobson, R. A.; U.S. Department of Energy Report IS-4737; Ames Laboratory, Iowa State University: Ames, Iowa, 1980.
- 25. Johnson, C. K.; U.S. Atomic Energy Commission Report ORNL-3794 (Second Revision with Supplemental Instructions); Oak Ridge National Laboratory: Oak Ridge, TN, 1970.
- 26. Santarsiero, B. D.; personal communication, California Insititue of Technology, Pasadena.
- 27. Bartle, K. D.; Jones, D. W.; Matthews, R. S. <u>Tetrahedron</u> 1971, <u>27</u>, 5177.
- 28. Kellog, R. M. in "Comprehensive Heterocyclic Chemistry" (Bird, C. W.; Cheeseman, G. W. H. eds.); Pergamon Press: New York, 1984; Vol. 4; p. 733.
- 29. Clark, P. D.; Ewing, D. F.; Scrowston, R. M. Org. Mag. Res. 1976, 8, 252.
- 30. (a) Emsley, J. W. "High Resolution Nuclear Magnetic Resonance"; Pergamon Press: New York, 1966, Vol. 2; p. 749. (b) Kellogg, R. M. in "Comprehensive Heterocyclic Chemistry" (Bird, C. W.; Cheeseman, G. W. H. eds.); Pergamon Press: New York, 1984; Vol. 4; p. 732.
- 31. (a) Muetterties, E. L.; Bleeke, J. R.; Wucherer, E. J.; Albright, T. A. <u>Chem. Rev.</u> 1982, 82, 499. (b) Kunz, V.; Nowack, W. <u>Helv.</u> <u>Chim. Acta</u> 1967, 50, 1052. (c) Hanic, F.; Mills, O. S. <u>J.</u> <u>Organomet. Chem.</u> 1968, 11, 151. (d) Muir, K. W.; Ferguson, G.; Sim, G. A. <u>J. Chem. Soc. (B)</u> 1968, 467. (e) Cais, M.; Kaftory, M.; Kohn, D. H.; Tatarsky, D. <u>J. Organomet. Chem.</u> 1979, 184, 103. (f) Hull Jr., J. W.; Gladfelter, W. L. Organometallics 1982, 1, 264.
- Geneste, P.; Guicla, A.; Levache, D. <u>Bull. Soc. Chim. Fr.</u> 1983, <u>5-6</u>, 136.

.....

- 33. White, C.; Thompson, S. J.; Maitlis, P. M. <u>J. Chem. Soc., Dalton</u> Trans. 1977, 1654.
- 34. Pecoraro, T. A.; Chianelli, R. R. J. Catal. 1981, 67, 430.

.

.

SUPPLEMENTARY MATERIAL

.

.

.

.....

.

•

78

Table 2.9. The least squares planes for [CpRu(BT)]BF4, 1^{a}

			Plane
0.57652	x	- 0.78459	y - 0.22165 z = 0.92045
-0.56187	X	+ 0.78991	y + 0.24563 z = 2.65516
-0.57974	х	+ 0.78195	y + 0.22903 z = 2.60708
-0.56999	x	+ 0.78571	y + 0.24035 z = 2.62569
	0.57652 -0.56187 -0.57974	0.57652 x -0.56187 x -0.57974 x	0.57652 x - 0.78459 -0.56187 x + 0.78991 -0.57974 x + 0.78195

Table 2.9. Continued

.

 a_s^2 = (sum of atomic deviations from the plane)².

Bond Distances (Å)		Bond A	ngles (°)
B-F1	1.347(12)	F1-B-F2	114.5(8)
B-F2	1.354(12)	F1-B-F3	105.1(9)
8-F3	1.397(14)	F1-B-F4	111.0(9)
B-F4	1.315(16)	F2-B-F3	106.5(8)
	F2-B-F4	111.0(10)	
	F3-B-F4	108.4(9)	

.

Table 2.10. Bond distances and angles for the BF_4^- anion in [CpRu(BT)]BF₄, 1

- -

Table 2.11. Structure factor table for $[CpRu(BT)]BF_4$, 1. The k index serves as column headings. Its maximum value is 13 and its minimum value is 0. The number of pieces of data = 1748 and the multiplicative scale factor for F0 and FC = 10.000; F0 will be signed. There are sixteen columns across the table

K = 0	4-10 304 -310	9 0 348 342	2 -7 226 227
H L FO FC	4 -8 659 -680	9 2 190 184	2 -6 1033-1000
0 2 1749 1962	4 -6 680 -662	9 6 55 -21	2 -5 520 -555
0 4 831 886	4 - 4 69 34	10 -6 184 188	2 -4 1072-1049
0 6 180 126	4 -2 418 369	10 -4 166 171	2 -3 175 -217
0 8 324 - 372	4 0 1143 1112	10 -2 118 120	2 -2 421 -404
0 10 679 -669	4 2 1497 1546	10 2 84 -107	2 -1 58 46
0 12 503 -473	4 4 1118 1115	10 4 114 -122	2 0 1014 -892
0 14 270 -250	4 6 711 717		2 1 230 -149
0 16 129 -146	4 8 295 315	K = 1	2 2 605 571
1-16 199 -189	4 10 128 -116	H L FO FC	2 4 614 613
1-14 82 -82	4 12 247 -233	0 1 246 -136	2 5 76 56
1-12 173 166	4 14 209 -203	0 2 736 -765	2 6 771 781
1-10 424 403	5 -8 406 422	0 3 554 518	2 8 494 532
1 [.] -8 869 867	5 -6 678 721	0 4 1220-1237	2959-56
1 -6 1213 1178	5 -4 1072 1086	0 5 55 56	2 10 481 485
1 -4 440 427	5 -2 688 630	0 6 1050-1015	2 12 131 125
1 -2 1249 1137	5 0 629 609	0 7 385 -330	2 13 75 84
1 0 105 -27	5 4 408 -428	0 8 613 -624	3-14 235 -222
1 2 464 -566	5 6 299 -282	0 10 459 -474	3-13 83 88
1 4 842 -717	5 8 388 -384	0 12 132 -127	3-12 247 -244
1 6 172 -173	5 10 228 -247	0 13 92 -103	3-11 124 137
1 8 614 -667	5 12 123 -146	0 16 156 149	3-10 530 -519
1 10 419 -406	6-14 83 97	1-16 104 92	3 -9 123 126
1 12 295 -298	6-12 251 283	1-14 291 271	3 -8 529 -486
1 16 108 112	6-10 357 375	1-12 406 400	3 -7 92 -98
2-16 64 51	6 -8 321 338	1-11 62 -54	3 -6 317 -325
2-14 147 164	6 -6 422 413	1-10 575 531	3 -5 68 -73
2-12 404 404	6 -4 156 137	1 -9 69 53	3 -4 298 241
2-10 434 463	6 0 563 -549	1 -8 380 382	3 -3 406 -424
2 -8 665 674	6 2 703 -685	1 -7 101 115	3 -2 706 654
2 -6 704 723	6 4 660 -638	1 -6 174 -185	3 -1 89 -111 3 0 875 864
2 -4 216 -187 2 -2 1103-1063	6 6 393 -381 6 8 240 -234	1 -5 381 405 1 -4 291 -257	3 0 875 864 3 1 518 -563
			3 2 1047 988
2 0 2225-2225 2 2 1132-1226	6 12 135 127 7-12 209 197	1 -3 592 567 1 -2 1920-1877	3 3 115 -92
2 4 960 -970	7-10 177 179	1 -1 276 -252	3 4 994 967
2 6 596 - 579	7 -8 131 -116	1 0 1372-1351	3 5 121 129
2 8 432 471	7 6 296 313	$1 \ 1 \ 642 \ -643$	3 6 250 289
2 10 485 475	7 -4 533 -515	1 2 2199-2366	3 7 324 353
2 12 391 368	7 -2 612 -589	1 3 502 -548	3 8 116 120
2 14 254 252	7 0 413 -381	1 4 497 -515	3 10 210 -223
2 16 144 160	7 2 278 -251	1 5 325 - 375	3 12 317 -290
3-16 210 187	7 4 203 200	1 6 63 -60	3 14 217 -199
3-14 223 202	7 6 93 82	1 7 469 -479	4-14 160 -173
3-10 265 -254	7 8 236 223	1 8 163 146	4-12 81 -94
3 -8 630 -629	7 10 199 196	1 9 103 -133	4-11 184 -190
3 -6 1201-1247	8-10 190 -190	1 10 468 477	4-10 177 190
3 -4 1269-1192	8 -8 259 -262	1 11 65 69	4 -9 169 -174
3 -2 671 -552	8 -6 359 -361	1 12 353 343	4 -8 372 384
3 0 50 -17	8 -4 204 -185	1 14 296 272	4 -6 811 795
3 2 517 489	8 0 116 125	1 16 148 143	4 -5 281 289
3 4 480 482	8 2 299 290	2-16 176 184	4 -4 1085 1071
3 6 325 346	8 4 326 321	2-14 153 157	4 -3 344 340
3 8 746 724	8 6 326 321	2-12 61 73	4 -2 1389 1292
3 10 523 506	8 8 183 159	2-11 136 128	4 -1 141 164
3 12 134 139	9 -6 130 135	2-10 66 -84	4 0 473 456
4-14 154 -179	9 -4 417 402	2 -9 169 163	4 1 195 200
4-12 370 -397	9 -2 515 501	2 -8 742 -756	4 3 183 -196

.

.....

.

. .

.....

81

-

.

.

.

. . .

Table 2.11. Continued

•

٠

.

4 4 431 -403	7 2 386 391	1 -7 204 197	3 -1 421 390
4 5 98 84	7 3 122 -119	1 -6 1031-1039	3 0 467 535
4 6 555 -592 4 7 68 -94	7 4 440 440 7 6 279 272	1 -5 356 415 1 -4 855 -840	3 1 53 29 3 2 68 -57
4 8 546 -572	7 8 93 94	1 -3 742 -744	3 3 678 708
4 9 102 -106 4 10 445 -446	7 9 64 71 8 -9 134 -137	1 -2 1823-1801 1 -1 480 -495	3 4 486 -541 3 5 304 316
4 11 74 -57	8 -7 144 -147	1 0 303 -396	3 6 867 -867
4 12 194 -191 5-11 79 -84	8 -6 227 203 8 -5 65 -69	1 1 513 -535 1 2 669 697	3 7 200 177 3 8 736 -736
5-10 485 518	8 -4 416 397	1 3 726 -705	3 9 136 -116
5 -8 396 393 5 -6 333 337	8 -2 474 472 8 -1 118 108	1 4 833 915 1 6 877 943	3 10 391 -365 3 11 145 -132
5-5 94 -97	8 0 420 416	1 7 250 243	3 12 91 -104
5 -4 274 252	8 1 180 180	1 8 842 837	3 13 109 -100
5 -3 206 182 5 -2 493 -478	8 2 201 206 8 3 89 95	1 9 124 134 1 10 230 201	4-14 167 181 4-13 101 -124
5 -1 .311 293	8 4 145 140	1 11 214 197	4-12 342 343
5 0 737 -701 5 1 366 381 5 2 985 -975 5 3 80 118	8 8 157 -154 9 -8 265 272	1 13 145 144 1 16 124 -116	4-11 130 -140 4-10 303 295
5 2 985 -975	9 -6 312 302	2-16 80 -89	4 -8 479 504
5 3 80 118 5 4 643 -659	9 -4 235 232 9 0 121 -134	2-14 215 -220 2-13 61 77	4 -7 214 199 4 -6 206 189
5 5 123 -131	9 1 65 70	2-12 379 -364	4 -5 408 438
5 6 402 -410 5 7 171 -196	9 2 185 -184 9 4 251 -259	2-10 375 -363 2 -9 172 -161	4 -4 316 -307 4 -2 591 -595
5 8 171 -171	9 6 184 -188	2 -8 455 -445	4 -1 425 399
5 9 179 -184 5 11 66 -64	10 -6 69 -55 10 -4 136 -136	2 -6 94 99 2 -5 407 -379	4 0 781 -747 4 1 220 186
5 12 198 197	$10 -2 \ 217 -226$	2 -4 554 530	4 2 714 -728
6-14 160 177	10 0 187 -178	2 -3 79 -89	4 3 253 260 4 4 330 -327
6-12 178 205 6-11 79 84	10 1 78 -69 10 2 132 -136	2 -2 180 -120 2 -1 826 689	4 4 330 - 327 4 5 265 - 292
6 -9 118 126	10 4 65 -66	2 0 349 348	4 6 329 -315
6 -7 62 89 6 -6 337 -318	K = 2	2 1 706 706 2 2 593 526	4 7 163 -160 4 8 147 -154
6 -5 112 -106	H L FO FC	2 3 533 -511	4 9 59 -50
6 -4 505 -496 6 -3 217 -218	0 0 1532-1422 0 1 229 -165	2 4 252 238 2 5 452 453	4 10 143 132 4 11 82 -95
6 -2 624 -606	0 2 201 -158	2 6 301 289	4 12 110 132
6 -1 135 -163 6 0 559 -544	0 3 259 -236 0 4 857 -848	2 7 144 136 2 8 108 -125	4 14 132 147 5-12 97 112
6 2 217 -204	0 5 201 -189	2 9 70 70	5 -9 143 141
6 6 376 376 6 7 112 122	0 6 288 -298 0 7 346 -352	2 10 225 -199 2 12 281 -267	5 -8 116 -115 5 -7 92 88
6 8 194 187	0 8 73 89	2 14 201 -192	5 -6 306 -315
6 9 88 66 6 10 275 261	0 9 261 -249 0 10 259 249	3-16 137 -141 3-14 172 -176	5 - 5 99 -90 5 -4 755 -754
6 10 275 261 6 12 158 156	0 10 239 249	3-13 82 -87	5 - 3 73 - 32
7-12 178 -178	0 12 374 345	3-12 100 -106	5 -2 773 -734 5 -1 242 -229
7-10 261 -254 7 -8 380 -355	0 14 279 271 0 16 123 122	3-11 213 -214 3 -9 350 -332	5 0 771 -808
7 -7 112 106	1-16 151 133	3-8 99 87	5 2 305 - 296
7 -6 343 -324 7 -5 87 89	1-14 171 156 1-12 92 97	3 -7 77 -89 3 -6 744 762	5 3 383 -384 5 4 205 229
7 -4 162 -165	1-11 115 125	3 -5 418 -375	5 5 200 -191
7 -2 223 220 7 0 359 335	1-10 276 -248 1 -9 410 370	3 -4 1103 1065 3 -3 136 129	5 6 314 313 5 8 437 443
7 1 110 -122	1 -8 651 -655	3 -2 1006 1009	5 9 142 135

82

.

Table 2.11. Continued

•

-

5 10 334 328	9 5 82 -101	2 -4 857 856	4 4 470 430
5 12 168 166	10 -6 202 -203	2 -3 332 -323	4 5 671 -682
6-12 169 -194	10 -4 208 -194	2 -2 112 79	4 6 411 407
6-10 369 -387 6 -8 432 -459	10 -2 84 -76 10 -1 78 -85	2 -1 656 674 2 0 274 239	4 7 99 -111 4 8 314 318
6 -8 432 -459 6 -7 134 -125	10 -1 78 -85 10 2 147 150	2 0 274 239 2 1 941 950	4 10 269 280
6 -6 288 -295	10 2 147 150	2 2 144 113	4 11 96 97
6 -5 89 -116	K = 3	2 3 730 736	4 12 172 174
6 -3 206 -196	H L FO FC	2 4 671 -695	4 13 106 104
6 -1 255 -259	0 1 808 -842	2 5 651 637	5-14 84 -82
6 0 369 388	0 2 542 488	2 6 886 -865	5-13 94 105
6 2 493 486	0 3 582 -583	2 7 76 91	5-12 170 -189
6 3 59 61	0 4 809 794	2 8 531 -505 2 9 175 -184	5-11 113 128 5-10 272 -296
6 4 384 363 6 5 97 94	0 5 210 -223 0 6 722 733	2 9 175 -184 2 10 115 -124	5-10 272 -296 5 -9 113 -113
6 6 157 145	0 7 384 407	2 10 115 -124	5 -8 291 -299
6 7 246 236	0 8 728 728	2 12 69 -75	5 -7 309 -325
6 9 118 126	0 9 337 331	2 13 186 -166	5 -6 380 -386
6 10 69 -56	0 10 273 277	2 15 94 -89	5 -5 366 -380
6 12 83 -80	0 11 222 220	3-15 102 -106	5 -4 115 -118
7-12 139 -138	0 13 149 150	3-14 136 140	5 -3 488 -476
7-10 97 -111	0 14 84 -83	3-13 88 -83	5 -2 155 159
7 -9 208 -203 7 -7 118 -126	0 16 90 -92 1-16 74 -83	3-12 217 225 3-10 454 448	5 -1 289 -271 5 0 378 400
7 -6 125 138	1-10 74 -03	3 -9 188 194	5 0 378 400 5 2 466 471
7 -5 114 -117	1-14 216 -211	3 -8 302 287	5 3 172 168
7 -4 336 302	1-12 309 -291	3 -7 556 543	5 4 493 502
7 -3 119 -128	1-11 181 -173	3 -6 234 267	5 5 184 201
7 -2 343 338	1-10 517 -498	3 -5 254 249	5 6 288 287
7 0 316 327	1 -9 286 -280	3 -4 179 -179	5 7 190 191
7 1 121 116 7 2 377 358	1 -8 462 -448 1 -7 333 -320	3 -3 458 459 3 -2 467 -416	5 9 217 217 5 12 137 -127
7 3 134 132	1 -5 503 -428	3 0 921 -912	5 13 82 90
7 5 97 100	1 -4 430 375	3 1 371 342	6-12 185 -199
7 6 132 -139	1 -3 443 467	3 2 823 -838	6 -8 157 173
7 8 295 -297	1 -2 95 180	3 3 324 -357	6 -7 167 -175
7 10 218 -205	1 -1 918 824	3 4 656 -681	6 -6 368 352
8-10 235 232	1 0 71 146	3 5 123 136 3 6 216 -225	6 -5 184 -178 6 -4 460 443
B -8 314 303 B -6 300 296	1 2 1258 1281 1 3 405 383	3 6 216 -225 3 7 169 -182	6 -4 460 443 6 -3 81 -94
8 -5 65 60	1 4 851 838	3 10 259 260	6 -2 486 476
8 -4 189 172	1 5 392 366	3 11 94 -95	6 0 286 285
8 -2 82 -92	1 6 100 -57	3 12 279 266	6 1 189 180
8 -1 103 102	1 7 369 345	3 13 64 -63	6 2 60 49
8 0 249 -241	1 8 133 -138	3 14 157 140	6 3 234 250
8 1 80 76	1 9 205 211	4-14 131 132	6 4 75 -90
8 2 374 -382 8 4 297 -295	1 10 236 -236 1 11 199 201	4-12 94 101 4-11 183 204	6 5 306 302 6 6 315 -312
8 6 247 -245	1 12 267 -257	4 -9 173 190	6 7 222 215
8 8 78 -104	1 13 61 51	4 -8 242 -252	6 8 257 -260
9 - 9 82 87	1 14 199 -197	4 -7 193 198	6 10 218 -216
9 - 5 68 78	2-16 131 -135	4 -6 514 -565	6 12 94 -96
9 -4 185 -195	2-14 131 -144	4 -5 301 322	7-11 97 -84
9 -2 236 -230	2-11 241 -247	4 -4 688 -725	7-10 212 222
9 0 249 -260	2-10 70 90	4 -3 192 196	7 -8 294 289
9 1 78 -83	2 -9 166 -189	4 -2 597 -614	7 -7 99 94 7 -6 229 219
9 2 191 -209 9 3 91 -101	2 -8 471 513 2 -7 486 -502	4 0 343 -304 4 1 612 -615	7 -6 229 219 7 -5 235 233
9 4 76 -84	2 -6 532 519	4 3 318 -324	7 -4 77 91
/ 10 -04			

.

.

. .

Table 2.11. Continued

•

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 9 301 296 0 10 316 -310 0 11 197 187	2 11 217 -215 2 12 218 195 2 14 169 151	5 -4 464 472 5 -2 486 451 5 -1 468 473	8 -4 104 -95 8 -3 156 -175 8 -1 330 -322

.

•••

......

....

-

.

·····

. -

.

.

•

Table 2.11. Continued

.

. •

,

...

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 6 465 455 2 7 100 -118 2 8 433 416 2 9 72 65 2 10 183 183 2 11 66 77 2 12 98 103 2 13 215 203	5 -2 149 -151 5 -1 496 487 5 0 460 -447 5 1 197 196 5 2 375 -386 5 3 90 103 5 4 268 -275 5 5 181 -186	9 -6 134 132 9 -3 166 168 9 -1 169 184 9 0 120 -124 9 1 151 164 9 2 150 -149 9 4 121 -132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 7 570 580 3 8 150 -149 3 9 381 387 3 10 62 -71 3 11 205 206 3 12 135 -149 3 14 101 -120	6 7 283 -281 6 8 184 182 6 10 127 127 6 11 62 55 7-10 199 -181 7 -8 228 -213 7 -6 195 -181 7 -5 239 -229	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

. .

• •• • • ••

· • ·

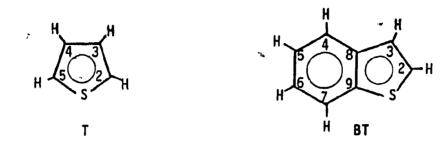
.

-

SECTION III. REACTIVITY OF HDS MODEL COMPLEXES: NUCLEOPHILIC ADDITION TO $\pi\text{-}\text{COORDINATED}$ THIOPHENE AND BENZO[b]THIOPHENES^1

. . .

.


.

INTRODUCTION

The process of catalytic hydrodesulfurization (HDS) is employed extensively in industry to remove sulfur, in the form of H_2S , from sulfurcontaining hydrocarbons present in crude oils and coal liquids.² The desulfurization of these feeds is necessary because many of the catalysts used to process petroleum are poisoned by sulfur. In addition, the combustion of sulfur-containing fuels produces the air pollutant sulfur dioxide.³

Despite numerous investigations, the mechanism of HDS is not understood; therefore, elucidation of important reaction pathways on catalyst surfaces continues to be an active area of research. Mechanistic studies generally involve reaction of a representative sulfur-containing compound over an HDS catalyst; the compound most often used as a model is thiophene (T). The thiophenic compounds represent the largest class of organosulfur compounds found in crude oils and coal liquids⁴ and are also the most difficult to desulfurize.⁵ However, within this class, benzo[b]thiophene (BT) and its derivatives (BTs) are present in significantly greater quantities⁶ and are less reactive under HDS conditions than Ts.^{5,7} This suggests that BTs are also important compounds for the study of HDS.

Because heterogeneous reactor studies have yielded few details of the HDS mechanism of thiophenes,⁸ our group has been investigating transition metal complexes of thiophenes in order to learn more about the reactivity of coordinated sulfur-containing compounds. These model complexes incorporate π -bound thiophenic ligands; π -bonding of the aromatic system

of thiophenes to the catalyst surface has been proposed to be an important mode of adsorption^{7a,b,9} and for T is supported by spectroscopic data.¹⁰ In the case of $[(CO)_3Mn(T)]^+$ and $[CpRu(T)]^+$, this approach has provided useful insights into reactions such as hydride addition, deuterium exchange, and carbon-sulfur bond cleavage, which occur also over HDS catalysts.¹¹ An important extension of this work would include studying the reactivity of π -bound BTs in transition metal complexes.

This paper describes the reactivity of π -bound T and BTs in cationic cyclopentadienyl Ru, Rh, and Ir complexes with respect to addition of a variety of nucleophiles (H⁻, MeO⁻, (MeO₂C)₂CH⁻, EtS⁻, and phosphines); nucleophilic species such as hydrides and sulfides have been proposed to be present on HDS catalyst surfaces.¹² The complexes are the first isolable transition metal cyclohexadienyl complexes derived from fused-ring aromatic ligands.¹³ The X-ray structure determination of one of the complexes, CpRu(BT·H), **6**, is also reported.

EXPERIMENTAL SECTION

All reactions were performed under N_2 in General Procedures reagent grade solvents. Diethyl ether (Et_20) and tetrahydrofuran (THF) were distilled from Na/benzophenone, CH₂Cl₂ and hexanes from CaH₂, MeOH from NaOMe and benzene was distilled from $LiAlH_{4}$. The solvents were stored over 4 Å molecular sieves, except for acetone which was stored over $MgSO_4$, and purged with N₂ prior to use. Commercial benzo[b]thiophene, BT, was sublimed at room temperature onto a water-cooled probe prior to use. The 2-MeBT, ¹⁴ $[Cp*IrCl_2]_2$ $(Cp* = n^5-C_5Me_5)$, ¹⁵ $[Cp*Ir(L)](BF_4)_2$ (L = BT, T)3-MeBT,2,3-Me₂BT,T),¹⁶ [CpRu(BT)]PF₆ (Cp = $n-C_5H_5$),¹⁶ PPN[HFe(CO)₄],¹⁷ NaSEt,¹⁸ and NaCH(CO_2Me)¹⁹ were prepared according to literature methods. However, the NaCH(CO_2Me)¹⁹ was not used in situ but was precipitated by addition of CH_2Cl_2 and then hexanes; the white solid was filtered, washed with additional CH_2Cl_2 , and then dried in vacuo. The NaSEt was stored in a desiccator and the NaCH(CO_2Me)₂ was stored under N_2 . Both compounds were weighed in a glove bag under a N_2 atmosphere.

The products 1-12 were characterized by elemental analysis (Galbraith Laboratories, Inc., Table 3.3) and their ¹H NMR spectra (Table 3.4). The ¹H and ¹³C{¹H} NMR spectra were obtained on a Nicolet NT-300 spectrometer using deuterated solvents as internal locks and referenced to SiMe₄. Fast atom bombardment (FAB) spectra were run on a Kratos MS-50 mass spectrometer. Electron-ionization mass spectra (EIMS) were run on a Finnigan 4000 spectrometer. Conductivity data were obtained on a Markson Electro Mark analyzer and calibrated with a standard KCl solution.

The electrochemical measurements were made using a Bioanalytical Systems CV-1B Cyclic Voltammograph under an Ar atmosphere at RT. A threeelectrode cell was used with a Ag/AgCl (NaCl, 3.0 M) reference electrode, a Pt wire counter electrode, and a stationary Pt disc working electrode (area = 3.1 mm^2). The supporting electrolyte, Bu₄NPF₆, was prepared according to a literature method²⁰ and dried at 100 °C under vacuum for 30 h. A 0.1 M concentration of Bu₄NPF₆ was used for the cyclic voltammetric experiments. Analyte concentrations in the solvent, CH₃NO₂, varied from 1.1 to 0.73 mM.

[Cp*Ir(2-MeBT)](BF₄)₂, 1 To a stirred solution of [Cp*IrCl₂]₂ (0.236 g, 0.296 mmol) in 5 mL of acetone was added AgBF₄ (0.230 g, 0.118 mmol). The solution was stirred 5 min and filtered through Celite which was rinsed with additional acetone (~4 mL). The volume of the filtrate was reduced to ~4 mL in vacuo, and then 2-MeBT (0.701 g, 0.473 mmol) was added. The reaction mixture was refluxed for 2 min and then cooled to RT. Approximately 20 mL of CH₂Cl₂ was added to precipitate the product which was filtered, dried in vacuo, and then recrystallized from CH₃NO₂/CH₂Cl₂ to give a white solid: yield, 0.260 g (67.8%); ¹H NMR (CD₃NO₂) & 8.07 (m,H7), 7.86 (m,H4), 7.28 (m, H3,H5,H6), 2.98 (d,J_{H3}-C2CH₃) = 1.1 Hz, C₂CH₃), 2.11 (s, C₅(CH₃)₅; ¹³C(¹H}NMR(CD₃NO₂) & 165.9 (C2), 120.3 (C9), 118.9 (C8), 118.3 (C3), 105.2 (C₅(CH₃)₅), 95.6 (C5), 93.8 (C6), 93.0 (C4), 92.0 (C7), 17.7 (C2CH₃), 9.1 (C₅(CH₃)₅).

[Cp*Ir(BT•H)]BF₄, 2 Approximately 5 mL of H_2^0 and 5 mL of $CH_2^{Cl}_2$ were purged with N₂ for 5 min. To this stirred solution was added

[Cp*Ir(BT)](BF₄)₂ (43.0 mg, 0.0677 mmol) and then NaBH₄ (5.1 mg, 0.13 mmol). After 5 min the layers were separated, and the water layer was extracted with CH₂Cl₂ (3 x 5 mL). The CH₂Cl₂ extracts were combined, dried for ~30 min over Na₂SO₄, and filtered. The yellow product was precipitated from the filtrate by addition of Et₂O: yield, 29 mg (78%); FAB(2-nitrophenyloctylether-CH₂Cl₂), m/e 463 (M⁺); $\Lambda_{\rm M}$ (0.98 x 10⁻³ M in CH₃NO₂): 79 mho cm² mol⁻¹.

[Cp*Ir(3-MeBT•H)]BF₄, 3 To a stirred solution of [Cp*Ir(3-MeBT)](BF₄)₂ (40.0 mg, 0.0616 mmol) in 3 mL of H₂O and 3 mL of CH₂Cl₂ was added NaBH₄ (4.7 mg, 0.12 mmol). The layers were separated after 3 min, and the H₂O layer was extracted with additional CH₂Cl₂. The yellow CH₂Cl₂ solution was treated as for 2 resulting in the isolation of a pale yellow solid: yield, 27 mg (79%); $\Lambda_{\rm M}$ (1.0 x 10⁻³ M in CH₃NO₂): 81 mho cm² mol⁻¹.

[Cp*Ir(2-MeBT•H)]BF₄, 4 This complex was prepared analogously to 2 from 1 (52.0 mg, 0.0801 mmol) and NaBH₄ (6.1 mg, 0.16 mmol). The product was isolated as a bright yellow solid: yield, 35 mg (78%).

 $\begin{aligned} & \text{Cp*Ir}(2,3-\text{Me}_{2}\text{BT-H})]\text{BF}_{4}, 5 & \text{This preparation was performed as for 2} \\ & \text{from } [\text{Cp*Ir}(2,3-\text{Me}_{2}\text{BT})](\text{BF}_{4})_{2} \text{ (55.0 mg, 0.0829 mmol) and NaBH}_{4} \text{ (6.3 mg, 0.17 mmol). A bright yellow solid was obtained: yield, 32.8 mg (68.5%).} \end{aligned}$

CpRu(BT+H), 6 To a stirred solution of $[CpRu(BT)]PF_6$ (0.103 g, 0.231 mmol) in CH_2Cl_2 (5 mL) was added NaBEt₃H (0.23 mL of a 1 M solution in THF, 0.23 mmol). The solution was stirred 5 min and evaporated to a

yellow oil in vacuo. The oil was extracted with Et_20 , the Et_20 extract filtered, and the yellow filtrate passed through a short column (~4 cm) of alumina. The yellow Et_20 solution was then evaporated to dryness and the residue sublimed at room temperature onto a water cooled probe in vacuo to give a bright yellow solid: yield, 49.5 mg (71.2%); EIMS (18 eV), m/e 302 (base peak, M⁺-H), 167 (M⁺-BT·H), 134 (BT⁺).

[Cp*Ir(BT+OMe)]BF₄, 7 To freshly distilled MeOH (5 mL) was added Na (1.8 mg, 0.078 mmol). The solution was stirred until all of the Na had dissolved. Then [Cp*Ir(BT)](BF₄)₂ (51.3 mg, 0.0808 mmol) was added, and the mixture was stirred until none of the solid [Cp*Ir(BT)](BF₄)₂ remained (~5 min). The yellow solution was evaporated to dryness, the residue extracted with CH₂Cl₂ (15 mL) and then the CH₂Cl₂ solution filtered. The volume of the yellow filtrate was reduced to 2 mL, and Et₂O (4 mL) was added to precipitate the product as a yellow solid which was then filtered, washed with Et₂O, and dried in vacuo: yield, 42.5 mg (93.7%); $\Lambda_{\rm M}$ (mho cm² mol⁻¹, 0.90 x 10⁻³ M in CH₃NO₂): 76.

[Cp*Ir(3-MeBT•OMe)]BF₄, 8 The preparation of this complex from Na (1.8 mg, 0.078 mmol) and [Cp*Ir(3-MeBT)](BF₄)₂ (51.9 mg, 0.0799 mmol) in freshly distilled MeOH proceeded analogously to that for 6. A pale yellow product was isolated: yield, 36.7 mg (77.4%). $\Lambda_{\rm M}$ (1.0 x 10⁻³ in CH₃NO₂): 75 mho cm² mol⁻¹.

 $[Cp*Ir(BT+CH(CO_2Me)_2)]BF_4$, 9 Under N₂, NaCH(CO₂Me)₂ (12.9 mg, 0.083 mmol) was weighed into a Schlenk flask. Acetone (4 mL) was vacuum distilled into the flask (cooled to -78 °C) which was stirred as it warmed

to room temperature. Then, $[Cp*Ir(BT)](BF_4)_2$ (53.6 mg, 0.0844 mmol) was added, the solution stirred for 2 min and then evaporated to dryness. The residue was extracted with CH_2Cl_2 , and the yellow solution was filtered through a short alumina column (4 cm). The volume of the filtrate was reduced to ~0.5 mL in vacuo and 25 mL of Et_20 was added. The mixture was frozen in $N_2(\mathfrak{a})$ and then slowly warmed to RT. This freezing process was repeated and the resulting yellow solid was filtered from the solution while it was still cold and then washed with cold Et_20 and dried in vacuo: yield, 22.6 mg (40.0%); Λ_M (1.0 x 10⁻³ M in CH_3NO_2): 75 mho cm² mol⁻¹.

[Cp*Ir(3-MeBT•CH(CO₂Me)₂)]BF₄, 10 This preparation was performed analogously to that for 8, from NaCH(CO₂Me)₂ (12.0 mg, 0.0774 mmol) and [Cp*Ir(3-MeBT)](BF₄)₂ (50.8 mg, 0.0782 mmol). The bright yellow oily product was crystallized by dissolving in CH₂Cl₂ (0.5 mL), adding Et₂O (80 mL) and storing at -20 °C for 58 h: yield, 31.9 mg (58.8%); $\Lambda_{\rm M}$ (1.2 x 10⁻³ M in CH₃NO₂): 65 mho cm² mol⁻¹.

[Cp*Ir(BT-SEt)]BF₄, 11 Under N₂, NaSEt (8.2 mg, 0.098 mmol) was weighed into a Schlenk flask. Then HSEt (1 mL) was added followed by acetone (5 mL, vacuum distilled into flask cooled to -78 °C). After the solution had warmed to 25°C additional HSEt (1 mL) was added, followed by [Cp*Ir(BT)](BF₄)₂ (62.5 mg, 0.0984 mmol). The reaction mixture was stirred for 2 min and then evaporated to dryness in vacuo. The residue was extracted with CH_2Cl_2 and the solution was chromatographed on an alumina column (4 cm). The yellow product was eluted with acetone, and

this solution was evaporated to a yellow oil in vacuo. The product was crystallized by dissolving in CH_2Cl_2 (0.5 mL), adding Et_2O (30 mL) and storing at -20 °C for 48 h. The green-yellow solid was filtered from the CH_2Cl_2/Et_2O solution and dried in vacuo: yield, 37.5 mg (62.5%).

[Cp*Ir(3-MeBT•SEt)]BF₄, 12 This compound was prepared from NaSEt (8.0 mg, 0.095 mmol) and [Cp*Ir(3-MeBT)](BF₄)₂ (64.9 mg, 0.100 mmol) using a method analogous to that for 10 to give a green solid: yield, 22.1 mg (37.2%).

[Cp*Ir(BT•PMe₃)](BF₄)₂, 13 To an NMR tube containing CD_3NO_2 (0.25 mL) was added first [Cp*Ir(BT)](BF₄)₂ (45.1 mg, 0.0710 mmol) and then PMe₃ (11 µL, 0.11 mmol). The clear solution turned bright yellow upon addition of the PMe₃; none of the [Cp*Ir(BT)](BF₄)₂ was observed by ¹H NMR. The solution was evaporated to a yellow oil in vacuo. FAB (dithioerythritol/dithiothreitol), m/e 481 (base peak, M^{2+} -PMe₃ + F⁻).

[Cp*Ir(d₂-BT)](BF₄)₂ To a solution of KOH (2.1 g, 37 mmol) in MeOD (40 mL) was added [CpRu(BT)]PF₆ (1.776 g, 3.988 mmol); the mixture was stirred at room temperature for 19 h.^{11g} Then, CO₂ was bubbled through the solution for 1.75 h. After evaporation of the reaction mixture to dryness in vacuo, the residue was extracted with CH₂Cl₂ and then acetone. The extracts were filtered, and Et₂O was added to precipitate out [CpRu(d₂-BT)]PF₆ which was dried in vacuo: yield, 1.354 g (76.24%). The compound was dissolved in CH₃CN (250 mL) and photolyzed (450 W Canrad-Hanovia medium-pressure, quartz, mercury-vapor lamp) for 7 days to give CpRu(NCMe₃)₃⁺ and d₂-BT. The solvent was removed from the

resulting orange solution by rotoevaporation giving a brownish oil which was extracted with pentane (100 mL). The bulk of the pentane was removed by rotoevaporation and then the last 0.5 mL was removed in vacuo. The d_2 -BT remaining was purified by sublimation in vacuo at 25°C onto a watercooled probe: yield 0.325 g (79.7% from [CpRu(BT)]PF₆). The d_2 -BT, with deuterium at the 2- and 7-positions (as determined by ¹H NMR), was then used in the preparation of [Cp*Ir(d_2 -BT)](BF₄)₂ from [Cp*IrCl₂]₂ by the method which has been previously described.¹⁶

X-ray Structure Determination of CpRu(BT•H), 6 Gold-colored crystals of 6 were grown by slow evaporation of a concentrated hexanes solution at -1 °C. The crystal,²¹ of approximate dimensions 0.3 x 0.3 x 0.5 mm was mounted on the end of a glass fiber and coated with a thin layer of epoxy cement. A least-squares fit of 25 reflections found in the range 20° < 20 < 30° by an automated search routine indicated a monoclinic crystal system. The intensities from ϕ -scans of eight reflections were used to apply an empirical absorption correction to the data. Lorentz and polarization corrections were applied to the data, and the intensities of equivalent reflections were averaged.

The position of the Ru atom was determined by direct methods. The remaining non-hydrogen atoms were then located from a difference Fourier synthesis. Following full-matrix refinement²² of all parameters for the non-hydrogen atoms, a difference Fourier map revealed peaks corresponding to all of the hydrogen atoms. Attempted full-matrix refinement using isotropic hydrogen atoms was unsuccessful. Therefore, only the hydrogen atoms on the cyclopentadienyl ring were refined. The positions of the

hydrogen atoms in the BT•H ligand were calculated (C-H bond length = 0.95 Å, isotropic temperature factor = $1.3 B_{eqv}$ for the attached carbon atom) and used in the structure factor calculations. Final refinement resulted in convergence to R = 0.029 and R_w = 0.043.

The crystal and data collection parameters for **6** are given in Table 3.1. The final positional and thermal parameters are listed in Table 3.2. Bond lengths and angles are presented in Table 3.6, and an $ORTEP^{23}$ drawing of **6** is given in Figure 3.3.

. .

	-	
Formula	RuSC ₁₃ H ₁₂	
Formula weight	301.37	
Space group	P2 ₁ /n	
a, Å	5.914(2)	
b, Å	14.234(2)	
C, Å	12.800(2)	
ß, deg	91.36(2)	
V, Å ³	1077.2	
Z	4	
d _{calc} , g/cm ³	1.86	
Crystal size, mm ³	0.3 × 0.3 × 0.5	
μ (MoK _{α}), cm ⁻¹	15.7	
Diffractometer	Enraf-Nonius CAD4	
Radiation (monochromated in incident beam)	$MoK_{\alpha}(\lambda_{2} = 0.71073 \text{ Å})$	
Temperature, °C	21	
Scan method	ω-2θ	
Max 20, deg	55.0	
Standard reflections	3, measured every hour of	
	exposure (no observed decay)	
Total unique reflections	2469	
Unique reflections observed $(F_0^2 > 3\sigma(F_0^2))$	2198	
Number of parameters refined	156	
T _{min} /T _{max}	0.996, 0.793	

.....

حسرت الدراعية العواريههم جحافات التصاديا عم

Table 3.1. Crystal and data collection parameters for the X-ray diffraction study of CpRu(BT•H), **6**, isomer A

.

Table 3.1. Continued

0.029
0.043
1.47
0.01
0.73

$$\label{eq:R} \begin{split} ^{a}R &= \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|. \\ ^{b}R_{w} &= [\sum \omega (|F_{o}| - |F_{c}|)^{2}/\sum \omega |F_{o}|^{2}]^{1/2}; \ \omega = 1/\sigma^{2} (|F_{o}|). \\ ^{c}\text{Quality of fit} &= [\sum \omega (|F_{o}| - |F_{c}|)^{2}/(N_{obs} - N_{parameters})]^{1/2}. \end{split}$$

Atom	x	У	Z	B(ave, Å ²) ^a
Ru	0.07475(3)	0.68578(1)	0.19505(1)	1.909(4)
S	0.0256(1)	0.92682(5)	0.11371(7)	3.26(1)
C2	0.2929(6)	0.9116(2)	0.0658(3)	3.59(6)
СЗ	0.4243(5)	0.8499(2)	0.1181(2)	2.79(5)
C4	0.3738(5)	0.7379(2)	0.2788(3)	3.06(5)
C5	0.2130(6)	0.7052(2)	0.3509(2)	3.08(5)
C6	-0.0472(5)	0.7427(2)	0.3487(2)	2.83(5)
C7	-0.0472(5)	0.8425(2)	0.3127(2)	2.74(5)
C8	0.3007(5)	0.8087(2)	0.2067(2)	2.32(5)
С9	0.0738(4)	0.8415(2)	0.2117(2)	2.22(4)
C10	-0.1885(5)	0.6390(2)	0.0831(3)	3.67(6)
C11	0.1714(6)	0.5742(2)	0.1636(3)	3.95(7)
C12	0.0481(7)	0.5347(2)	0.1648(3)	4.01(7)
C13	0.1657(6)	0.5762(2)	0.0815(3)	3.72(6)
C14	0.0207(6)	0.6407(3)	0.0322(2)	3.71(6)
H10	-0.311(6)	0.676(2)	0.060(3)	1.7(8)
H11	-0.262(7)	0.566(3)	0.196(4)	3(1)
H12	0.096(6)	0.496(4)	0.205(3)	4(1)
H13	0.288(7)	0.5 6 1(3)	0.054(4)	3(1)
H14	0.071(6)	0.674(2)	-0.029(3)	1.9(8)

Table 3.2. Positional and Thermal Parameters for CpRu(BT•H), 6

^aGiven in the form of the isotropic equivalent displacement parameter defined as $4/3[a^2B_{11} + b^2B_{22} + c^2B_{33} + ab(\cos \gamma)B_{12} + ac(\cos \beta)B_{13} + bc(\cos \alpha)B_{23}]$.

.

RESULTS AND DISCUSSION

Preparation of $[Cp*Ir(2-MeBT)](BF_4)_2$, 1 The reaction of $[Cp*IrCl_2]_2$, AgBF₄, and 2-MeBT produces 1, as shown in eq. 1.

$$[Cp*IrCl_2]_2 + 4 AgBF_4 \xrightarrow{acetone}{xs 2-MeBT} 2[Cp*Ir(2-MeBT)](BF_4)_2 + 4 AgCl (1)$$
1

This method has previously been used to synthesize other iridium T and BT compounds.¹⁶ Complex 1 is air stable in the solid state.

The ¹H and ¹³C[¹H] NMR spectra of 1 were assigned by comparison with spectra for the analogous complexes, $[Cp*IrL]^{2+}$ (L = BT, 3-MeBT, 2,3-Me₂BT),¹⁴ as well as by comparison with spectra for uncoordinated 2-MeBT.²⁴ The H3, H4, H7, and C2-CH₃ ¹H NMR resonances in 1 are downfield of those for free 2-MeBT, while the chemical shifts for H5 and H6 show very little change. The larger downfield shifts in 1 for H2 and C2-CH₃ relative to those for H4 and H7 suggest that the ligand is bound through the benzene ring. A similar trend was observed for the π -benzene-bound BT and 3-MeBT in [CpRuL]⁺ (L = BT, 3-MeBT). The ruthenium BT complex was structurally characterized by X-ray crystallography.¹⁶

Reactions of [Cp*Ir(BTs)]^{2+} and [CpRu(BT)]^+ with Hydrides Complex 2 was prepared by reaction of NaBH₄ and $[Cp*Ir(BT)](BF_4)_2$ in CH_2Cl_2/H_2O as shown in eq.2.

$$\sum_{cp}^{*} \sum_{r}^{2+} + NaBH_{4} \xrightarrow{CH_{2}C_{1}^{2}/H_{2}^{0}}{5 \min} [Cp*Ir(BT \cdot H)]BF_{4} + NaBF_{4}$$
(2)

The bright yellow solid, 2, is air stable and was characterized by its elemental analyses (Table 3.3), FAB mass spectrum, molar conductivity, and 1 H NMR spectrum (Table 3.4). 24

The ¹H NMR spectrum (a portion of which is shown in Figure 3.1) is much more complex than that which might be expected from a single compound. The complexity arises from the presence of four isomers of 2 which are shown in Figure 3.2. The ¹H NMR resonances corresponding to these isomers were assigned by selective decoupling experiments and by the use of $[Cp*Ir(d_2-BT)]^{2+}$ to synthesize $[Cp*Ir(d_2-BT•H)]^+$. The $[Cp*Ir(d_2-BT)]^{2+}$ had deuterium substituted for hydrogen at the 2- (93%) and 7- (75%) positions.^{11g} For isomer A of 2, the resonance corresponding to H2 was no longer present, and the doublet for H3 (J_{H2-H3} = 5.4 Hz) had collapsed to a singlet (J_{H-H}/J_{H-D} \cong 6.51).²⁵ The H4 (d,J_{H4-H5} = 4.9 Hz) and H5 (virtual t, J_{H5-H6} \cong 5.8 Hz) resonances were unchanged. Due to the presence of deuterium at the 7-position the virtual triplet corresponding to H6 (J_{H6-H7} = 6.3 Hz) collapsed to a doublet and the H_{exo} resonance collapsed to a singlet (J_{H7-Hexo} = 13.0 Hz).

The magnitude of the coupling constant between H7 (the endo hydrogen at C7) and H6 is expected to be greater than that between H6 and H_{exo} based on the Karplus relationship.²⁶ This trend in coupling constants has been observed in analogous organometallic systems.²⁷ A resonance for H7, which should be a doublet of doublets due to H6 and H_{exo} coupling, was not observed. Using undeuterated 2, the approximate position of the H7 resonance was assigned by observing that H6, a virtual triplet, collapsed to a doublet upon irradiation of the multiplet in the 4.00-3.93 ppm

-	·	
Compound	%C Found (calc)	%H Found (calc)
[Cp [*] Ir(2-MeBT)](BF ₄) ₂ , 1	34.98 (35.15)	3.69 (3. 57)
[Cp [*] Ir(BT•H)]BF ₄ , 2	39.26 (39.35)	4.43 (4.04)
[Cp [*] Ir(3-MeBT•H)]BF ₄ , 3	40.26 (40.50)	4.20 (4.29)
[Cp [*] Ir(2-MeBT•H)]BF ₄ , 4	40.23 (40.50)	4.41 (4.29)
[Cp [*] Ir(2,3-Me ₂ BT•H)]BF ₄ , 5	41.45 (41.60)	4.93 (4.54)
CpRu(BT•H), 6	51.32 (51.81)	4.39 (4.01)
[Cp [*] Ir(BT•OMe)]BF ₄ , 7	39.10 (39.38)	4.24 (4.17)
[Cp [*] Ir(3-MeBT•OMe)]BF ₄ , 8	40.23 (40.48)	4.43 (4.42)
[Cp [*] Ir(BT•CH(CO ₂ Me) ₂)]BF ₄ , 9	4 0.89 (40 .6 5)	4.03 (4.15)
[Cp [*] Ir(3-MeBT•CH(CO ₂ Me) ₂]BF ₄ , 10	41.41 (41.56)	4.31 (4.36)
[Cp [*] Ir(BT•SEt)]BF ₄ , 11	39.14 (39.41)	4.35 (4.30)
[Cp [*] Ir(3-MeBT•SEt)]BF ₄ , 12	40.13 (40.45)	4.29 (4.53)

•

.

. .

Table 3.3 Analytical data for the complexes

.

.

. . .

Compound	H2	Н3	H4	H5	H6
[Cp [*] Ir(BT•H)]BF ₄ , 2					
A ^b	7.76d	7.09 đ	7 . 23 d	5.58 t	4.07 t
Bb	8.00 d	6.64 d	4.00- 3.93 ^C	3.86 t	5.60 t
c ^b	8.2 6 d	7.28 d	6.09 d	4.11- 3.92 ^C	3.23 p
^d ם	8.1 7 d	6.87 d	4.11- 3.93 ^C	3.14 p	4.11- 3.39 ^C
[Cp [*] Ir(3-MeBT•H)]BF ₄ , 3					
A ^b	7.36 q		7 .13 d	5.58 t	4.08 t
B ^b	7.59 q		3.85- 3.95 ^C	3.87 t	5.61 t
с ^ь	7 . 85 q		6.02 d	4.00- 3.93 ^C	3.23 p

Table 3.4. ¹H NMR Data for Isomers of Complexes 2-13^a

^ad = doublet, t = virtual triplet, q = quartet, p = virtual pentet, br = broad.

^bd₆-acetone.

• • • • •

 C Exact position of peak within the complex multiplet not determined. d Peak either not observed or could not be definitively assigned.

H7	с ₂ -сң ₃	с ₃ -сң ₃	с ₅ Н ₅	с ₅ (С <u>Н</u> 3)5	, Nucleophile	Selected coupling constants (Hz)
4.00-				1.87 s	5.03 d(H _{exo})	J _{H7-Hexo} = 13.0
3.93 ^C						cho
7 .4 4 d				1.91 s	5.23 d(H _{exo})	$J_{H4-H_{exo}} = 13.4$
4.28 d				d	4.30 d(H _{exo})	J _{H6-H_{exo} = 12.7}
6.28 d				d	4.19 d (H _{exo})	J _{H5-H_{exo} = 12.3}
3.95-		2.19 d		1.88 [°] s	5.02 d(H _{exo})	J _{H7-H_{exo} = 13.1}
3.91 ^C						$J_{H2-C3-CH_3} = 1.2$
7.40 d		2.27 d		d	5.15 d(H _{exo})	$J_{H4-H_{exo}} = 12.6$
						$J_{H2-C3-CH_3} = 1.1$
4 . 25 d		2.40 d		d	4.28 d(H _{exo})	$J_{H6-H_{exo}} = 13.5$
						$J_{H2-C3-CH_3} = 1.2$

.

Table 3.4. Continued

____ /

. . **.**

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Compound	H2	Н3	H4	H5	H6
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	٥b	7.78 q		3.87-	3.16 p	3.80-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3.83 ^C		3.95 ^C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cp [*] Ir(2-MeBT•H)]BF ₄ , 4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ab	6.79	br,s	7.10 d	5.52 t	4.03 t
$\begin{array}{cccc} c^b & 7.00 \ br,s & 5.97 \ d & 4.05- & 3.10 \\ & & & & & & & & & & & & & & & & & & $	B ^b	6.34	br,s	3.95-	4.10-	5.34 t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3.75 ^C	3.75 ^C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	с ^ь	7.00	br,s	5 .9 7 d	4.05-	3.18 p
$3.76^{C} \qquad 3.74$ $Ir (2,3-Me_2BT+H)]BF_4, 5$ $A^{b} \qquad 7.06 d 5.53 t 4.04$ $B^{b} \qquad 3.95- 3.78 t 5.54$ $3.75^{C} \qquad 3.75^{C} \qquad 5.96 d 4.10- 3.19$ $3.95^{C} \qquad 3.95^{C}$					3.76 ^C	
Ir(2,3-Me ₂ BT•H)]BF ₄ , 5 A^{b} 7.06 d 5.53 t 4.04 B^{b} 3.95- 3.78 t 5.55 3.75 ^C 3.75 ^C 5.96 d 4.10- 3.19 3.95 ^C 3.95 ^C	Dp	6.59	br,s	4.05-	3.10 p	4.05-
$\begin{array}{cccc} A^{b} & & 7.06 & 5.53 & t & 4.04 \\ B^{b} & & 3.95- & 3.78 & t & 5.58 \\ & & & 3.75^{C} & \\ C^{b} & & & 5.96 & 4.10- & 3.19 \\ & & & & 3.95^{C} \end{array}$				3.76 ^C		3.76 ^C
B ^b 3.95- 3.78 t 5.59 3.75 ^C C ^b 5.96 d 4.10- 3.19 3.95 ^C	Cp [*] Ir(2,3-Me ₂ BT•H)]BF ₄ , 5					
3.75 ^C C ^b . 5.96 d 4.10- 3.19 3.95 ^C	Ap			7.0 6 d	5.53 t	4.04 t
c ^b 5.96 d 4.10- 3.19 3.95 ^C	Bp			3.95-	3.78 t	5.55 t
3.95 ^C				3.75 ^C		
L.	Cp		•	5 . 96 d	4.10-	3.19 p
D ^b 4.10- 3.12 p 4.10					3.95 ^C	
•	Dp			4.10-	3.12 p	4.10-
3.75 ^C 3.75				3.75 ^C		3.75 ^C

· •

H7	С ₂ -С <u>Н</u> 3	с ₃ -сӈ ₃	C ₅ ⊭₅	С ₅ (С <u>Н</u> 3)5	Nucleophile	Selected coupling constants (Hz)
6.24 d	ł	2.08 d	l	d	4.20 d(H _{exo})	J _{H5-H_{exo} = 13.2 J_{H2-C3-CH3} = 1.2}
3.95- 3.75 ^C	2.60 br,s	i		1.92 s	4.94 d(H _{exo})	J _{H7-H_{exo} = 12.9}
7.33 d	2.39 br,s			1.90 s	5.19 d(H _{exo})	$J_{H4-H}_{exo} = 13.2$
4.20 d	2.73 br,s			1.95 s	4.28 d(H _{exo)}	$J_{H6-H_{exo}} = 12.7$
6.19 d	2.71 br,s		·	1.94 s	4.21 d(H _{exo})	J _{H5-H_{exo} = 12.6}
3.95- 3.75 ^C	2.50 d	2.11 bi	° _s s	1.90 s	4.90 d(H _{exo)}	J _{H7-H} exo = 12.8
	2.30 br,s	2.17 d		1.89 s	5.13 d(H _{exo})	J _{H4-H_{exo} = 13.4}
4.17 d	2.60 d	2.07 d		1.94 s	4.26 d(H _{exo})	J _{H6-H_{exo} = 12.7}
6.15 d	2.63 d	2.31 d		1.93 s	4.19 d(H _{exo})	J _{H5-H_{exo} = 12.2}

	· · · · · · · · · · · · · · · · · · ·				····
Compound	H2	H3	H4	H5	H6
CpRu(BT•H), 6					
Ae	6.44 d	6.34 d	6.13 d	4.27 t	2.96 t
B ^e	6.37 d	6.27 d	3.26 dd	2.69 t	4.33 t
c ^e	6.77 d	6.86 d	5.20 d	2.48-	2.73-
				2.55 ^C	2.54 ^C
DC	6.72 d	6.3 5 d	2.73-	2.73-	2.48-
			2.54 ^C	2.54 ^C	2.55 ^C
[Cp [*] Ir(BT•OMe)]BF ₄ , 7					
Ab	7 .94 d	7.10 d	7.15 d	5.69 t	4.71 t
B ^b	7 . 95 d	6.92 d	4.76 d	4.62 t	5.34 t
c ^b	8 .26 d	7.24 d	6.27 d	4.60-	4.12 t
				4.80 ^C	
Db	8.22 d	6.97 d	d	4.06 t	đ
Cp [*] Ir(3-MeBT•OMe)]BF ₄ , 8					
Ab	7.56 q		7.05 d	5.70 d	4.71 t
Bb	7.52 q		4.77-	4.77-	5.60-
			4.65 ^C	4.65 ^C	5.68 ^C
c ^b	7 . 86 q		d	ď	d
Dpp	7.83 q		d	d	d

....

Table 3.4. Continued

^ed₆-benzene.

-

H7	с ₂ -сң ₃	с ₃ -сң ₃	°₅⊎₅	C ₅ (CH ₃) ₅	Nucleophile	Selected coupling constants (Hz)
3.44 da	ł		4.31 s	5	3.19 d(H _{exo})	J _{H7-Hexo} = 11.6
6.38-			4.29 s	5	3.15 d(H _{exo})	$J_{H4-H_{exo}} = 11.3$
6.33 ^C						
2.73-			đ		2.73-2.54 ^C	
2.54 ^C					(H _{exo})	
5.50 d			d		2.73-2.54 ^C	
					(H _{exo})	
4 . 83 d					3.02 s(OCH ₃)	
7.35 d				1.91 s	2.95 s(OCH ₃)	
5.24 d				d	2.98 s(OCH ₃)	
6.46 d				d	2.97 s(0CH ₃)	
1.78 d		2.24 d		1 .9 2 s	3.03 s(OCH ₃)	
7.00-		2.25 d		d .	3.02 s(0CH ₃)	
.05 ^C				-		
d		2.39 d		d	d	

107

.

Compound	H2	H3	H4	H5	H6
[(Cp [*] Ir(BT•CH(CO ₂ Me) ₂]BF ₄ , 9					
A ^b	7.79 d	7.0 9 d	7 . 28 d	5.53 t	4.27 t
B ^b	7 . 89 d	6.59 d	4.45 dd	4.15 t	5.68 t
с ^ь	8.28 d	d	6.1 4 d	d	d
Dpp	8.22 d	6.8 9 d	d	d	d
Cp [*] Ir(3-MeBT•CH(CO ₂ Me) ₂]BF ₄ ,	10				
Ap	7.40 q		7.19 d	5.56 t	4.27 t
Bp	7.51 q		4.45-	4.40-	5.58 t
			4.20 ^C	4.20 ^C	
¢b	7.88 q		6. 06 d	d	d
Dpp	7.84 q		đ	d	d
Cp [*] Ir(BT•SEt)]BF ₄ , 11					
A ^b	7.88 d	7.07 d	7.23 d	5.67 t	4.54 t

· · ·

. . .

Table 3.4. Continued

.

and a second second

. •

H7	с ₂ -сң ₃	с ₃ -сң ₃	^C 5 [∺] 5	C ₅ (CH ₃)5	Nucleophile	Selected coupling constants (Hz)
4.54	dd			1.89 s	2.87 d(CH)	$J_{H7-CH} = 8.2$
					3.52 s(CH ₃)	
					3.61 s(CH ₃)	
7.48 0	đ			1.90 s	2.81 d(CH)	$J_{H4-CH} = 8.4$
					3.48 s(CH ₃)	
					3.61 s(CH ₃)	
4 . 63 c	ł			d	d	
6.34 c	İ			d	d	
4.50 d	ld	2. 21 d		1.90 s	2.87 d(CH)	J _{H7-CH} = 8.4
					3.53 s(CH ₃)	
					3.61 s(Cℍ ₃)	
7.46 d	l	2 .2 3 d		d	2.82 d(CH)	J _{H4-CH} = 8.4
					3.46 s(CH ₃)	
					3.61 s(CH ₃)	
4.58 d		2.39 d		d	ď	
5 . 29 d		2.1 0 d		d	d	
5 . 25 d				1.90 s	1.06 m(CH ₃)	
					2.36 m(CH ₂)	

• · · ·

. .

Compound	H2	H3	H4	H5	H6
B ^b	8.01 d	6.83 d	5.17 d	4.42 t	5.73 t
c ^b	8.31 d	7.28 d	d	ď	d
Dpp	8.24 d	d	d	ď	d
[Cp [*] Ir(3-MeBT•SEt)]BF ₄ , 12					
A ^b	7.48 q		7.14 d	5.67 t	4.54 t
Bp	7.51 q		е	4.68 t	d
c ^b	7 . 64 q		6.17 d	d	d
٥ ^b	7 . 56 q		d	d	d
[Cp*Ir(BT•PMe ₃)](BF ₄) ₂ , 13					
A ^f	7.81 d	7.15 d	7 .28 d	5.71 t	4.28 t
Bf	8.07 d	6. 79 d	5.47-	4.19 t	5.75-
			5.40 ^C		5.65 ^C
Cf	8.25 d	7.24 d	6.17 d	d	đ
Df	8.20 d	6.90 d	d	d	d

•

.

.

. .

Table 3.4. Continued

fcD₃NO₂.

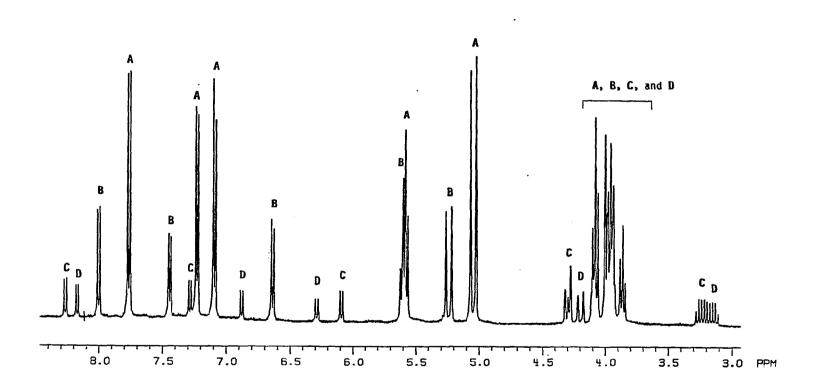
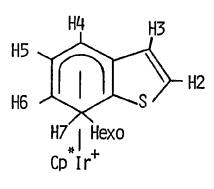
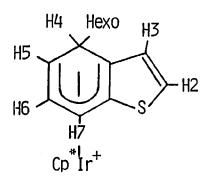
- - --

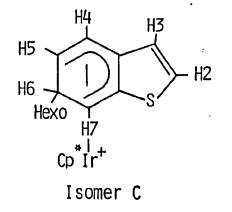
H7	с ₂ -сң ₃	c₃-cң₃	°5₽5	с ₅ (с <u>н</u> 3)5	Nucleophile	Selected coupling constants (Hz)
7.44 d				d	d	нананан (так) (
d				d	d	
d				d	ď	
5.19 d		2.22 d		1.90 s	1.10 m(CH ₃)	
					2.37 m(CH ₂)	
7.03 d		2 .3 4 d		1 .91 s	d	
d		2.16 d		d	d	
d		2.63 d		ď	d	
5.42 d	d			1.89 s	1.61 d(PMe ₃)	
7.42 d				đ	1.42 d(PMe ₃)	$J_{P-CH_3} = 13.4$ $J_{P-CH_3} = 12.8$
d				d	d	
6.29 d				d	d	

•

•

.


Figure 3.1. ¹H NMR Spectrum of $[Cp*Ir(BT•H)]^+$, 2, in d₆-acetone

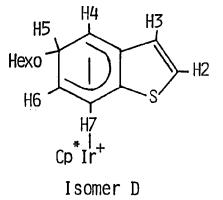


Figure 3.2. Isomers A-D of [Cp*Ir(BT•H)]⁺, 2

region. The downfield shift of the H_{exo} resonance relative to that for the endo proton, H7, is unusual²⁸ but has previously been observed for $[Cp*Ir(C_6H_6•H)]^+$.²⁹ A reaction performed using NaBD₄ and $[Cp*Ir(BT)]^{2+}$ showed that D⁻ addition occurs only at the exo face of the BT ligand. The integral of the H_{exo} doublet was small (but was observed, due to NaBH₄ impurities in the NaBD₄) relative to the other resonances for A and the singlet at this position which would have resulted from an endo D was not observed.

The chemical shifts for isomers B, C, and D were assigned analogously to those for A. The virtual pentets corresponding to H6 in isomer C and H5 in isomer D result from coupling to H_{exo} and further splitting of the resonances by the two vicinal protons (C: $J_{H6-H5} = 6.3 \text{ Hz}$, $J_{H6-H7} = 6.0$ Hz; D: $J_{H5-H4} \cong J_{H5-H6} \cong 6.6 \text{ Hz}$). The Cp* resonances of isomers C and D were not resolved from the peaks for A and B. The ${}^{13}C{}^{1}H$ NMR spectrum of 2 was obtained but assignments of the numerous resonances were not made.

The percentages of the isomers A-D present were determined by integration of the respective ¹H NMR signals and are given in Table 3.5. During 3 days at 25°C in d_6 -acetone these percentages remained unchanged. The relative amounts of A-D were also the same when 2 was dissolved in CDCl₃ and CD₃NO₂ at 25°C. Therefore, there is no isomer interconversion under these conditions. The distribution of isomers does change slightly with different preparations. As compared to the percentages given in Table 3.5, the amounts of A, B, C, and D formed in three other preparations of 2, performed analogously to that described in the Experimental Section, were (56, 23, 11, 10%), (60, 25, 8, 7%), and

	% Isomer				
Compound	A	В	С	D	
[Cp [*] Ir(BT•H)]BF ₄ , 2	61	25	8	6	
[Cp [*] Ir(3-MeBT•H)]BF ₄ , 3	58	27	8	7	
[Cp [*] Ir(2-MeBT•H)]BF ₄ , 4	60	23	9	8	
[Cp [*] Ir(2,3-Me ₂ BT•H)]BF ₄ , 5	60	25	8	7	
CpRu(BT•H), 6	78	15	5	2	
[Cp [*] Ir(BT•OMe)]BF ₄ , 7	70	18	10	2	
[Cp [*] Ir(3-MeBT•OMe)]BF ₄ , 8	80	15	3	2	
[Cp [*] Ir(BT•CH(CO ₂ Me) ₂)]BF ₄ , 9	61	26	8	5	
<pre>[Cp[*]Ir(3-MeBT•CH(CO2Me)2]BF4, 10</pre>	53	25	11	11	
[Cp [*] Ir(BT•SEt)]BF ₄ , 11	87	9	3	1	
[Cp [*] Ir(3-MeBT•SEt)]BF ₄ , 12	70	23	4	3	
[Cp [*] Ir(BT•PMe ₃)](BF ₄) ₂ , 13	75	14	8	3	

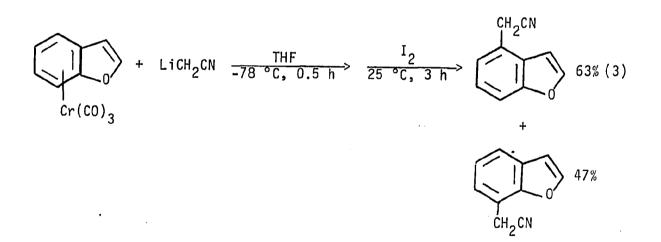
. . .

.

Table 3.5. Percentages of Isomers A-D of Complexes 2-13

.....

.


.

.

.

(63, 24, 7, 6%). When PPN[HFe(CO)₄] was used as a H⁻ source the relative amounts of A and B in 2 were 77 and 23 respectively. The amounts of C and D were not determined due to the relatively poor quality of the spectrum. The relative amounts of A and B in the NaBH₄ reaction were 71 and 29. Therefore, the H⁻ source has little effect on the isomeric distribution in 2. The isomers could not be separated by either chromatography or fractional crystallization.

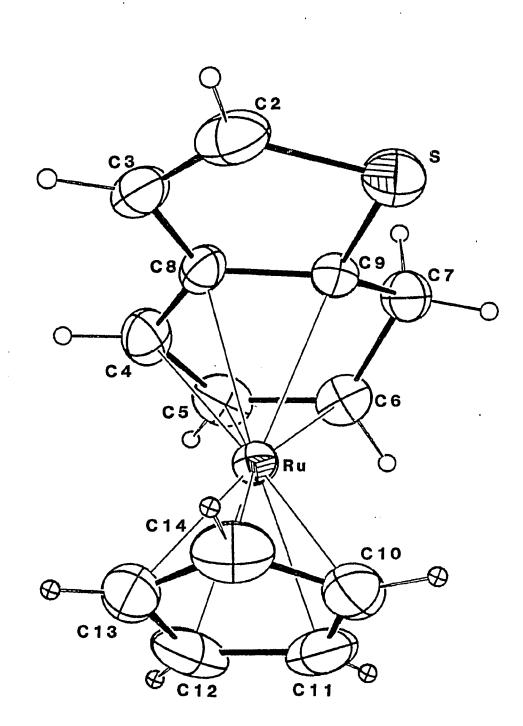
The only other reports of nucleophilic attack on transition-metalbound fused ring aromatic ligands are for $Cr(CO)_{3}L$ (L = naphthalene,³⁰ benzofuran,^{13b} and indole^{13b,31}). The reaction of carbon nucleophiles with the chromium complexes to generate anionic cyclohexadienyl intermediates was followed by oxidation to produce the uncoordinated substituted ligand as shown in eq. 3 for benzofuran.^{30a, 13b}

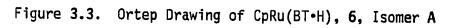
The nucleophilic addition reactions occurred preferentially at C4 except for 3 of the 17 reactions studied (in these cases, C7 addition was preferred).^{13b} Attack at C6 was reported to give rise to a minor product in only a few of the reactions. Semmelhack et al.^{13b,30a} performed molecular orbital analyses for naphthalene and indole and found that the selectivity correlated with the magnitude of the LUMO coefficients for the free ligands.

The preference for H⁻ attack at C7 in $[Cp*Ir(BT)]^{2+}$ and the significant amounts of isomers resulting from attack at C5 and C6 contrasts with the results reported for the chromium complexes. At this time the LUMO coefficients for BT (either coordinated to a transition metal or unbound) have not been reported and, therefore, conclusions regarding the controlling factors in this reaction cannot be drawn.

The preparations of 3, 4, and 5 proceed analogously to that of 2 and result in the isolation of yellow air-stable solids. These complexes were characterized by their elemental analyses (Table 3.3) and ¹H NMR spectra (Table 3.4). The ¹H NMR spectra of 4 and 5 showed weak peaks due to 3, which was formed from $[Cp*Ir(2-MeBT)]^{2+}$ impurities in $[Cp*Ir(3-MeBT)]^{2+}$ and $[Cp*Ir(2,3-Me_2BT)]^{2+}$ starting materials. The 2-MeBT impurities were present in the commercial 3-MeBT which was used to synthesize 2,3-Me_2BT and the iridium complexes. The ¹H NMR spectra were assigned by analogy with 2. As shown in Table 3.5, the distribution of isomers was not significantly affected by the presence or position of the methyl substituents.

Complex 6 is prepared from NaBEt₃H and [CpRu(BT)]PF₆ as shown in eq. 4.


$$[CpRu(BT)]PF_{6} + NaBEt_{3}H \xrightarrow{CH_{2}Cl_{2}}{5 \text{ min}} > CpRu(BT \cdot H) + NaPF_{6} + BEt_{3}$$
(4)


The resulting air-sensitive yellow solid was identified by its elemental analyses (Table 3.3), EIMS, and ¹H NMR spectrum (Table 3.4). As for compounds 2-5, four isomers of 6 are produced. The ¹H NMR resonances for these isomers were assigned by selective decoupling experiments and by analogy with the assignments for 2. The assignments were confirmed by synthesis of CpRu(d₂-BT•H) and comparison of its ¹H NMR spectrum with the spectrum for 6. The intensities and splittings of the resonances in the spectrum of CpRu(d₂-BT•H) also established that H⁻ addition occurs in an exo fashion.

Integration of the resonances in the ¹H NMR spectrum provided the isomeric distribution given in Table 3.5. In contrast to 2 the isomeric distribution of 6 changes significantly with different preparations. When a slight excess of NaBEt₃H was used, the percentages of A-D in 6 were 51, 26, 14, and 9%, respectively, as compared to 78, 15, 5, and 2% given in Table 3.5. There is no interconversion of isomers in d₆-benzene after 24 h at 25°C.

Structural Characterization of CpRu(BT-H), 6 Complexes 2-12 represent the first isolable cyclohexadienyl complexes derived from fused-ring aromatic systems. The $[Cr(CO)_3(n^5-naphthalene-H)]^-$ resulting from protonation of $[Cr(CO)_3(naphthalene)]^{2-}$ has only been observed spectroscopically.^{13a,32} We were, therefore, interested in elucidating the structural characteristics of this type of complex by an X-ray diffraction study of 6.

The crystal structure of **6** (which turned out to be the major isomer, A), Figure 3.3, clearly shows the cyclohexadienyl nature of the BT•H

....

ligand. The C7 atom is displaced 0.645(3) Å from the least-squares plane defined by C4, C5, C6, C8, and C9 (Table 3.8, Supplementary Material). None of these five atoms deviates from the least-squares plane by more than 0.001(3) Å. The C6-C7 and C9-C7 bond lengths (Table 3.6), 1.509(4) and 1.493(4) Å, respectively, are slightly shorter than expected for a $C(sp^3)-C(sp^2)$ bond $(1.51 Å)^{33}$ but are within the range observed for other n^5 -cyclohexadienyl complexes (1.49-1.55 Å).³³⁻³⁴ The C6-C7-C9 angle, 100.6(2), is smaller than the ideal tetrahedral value of 109.46° but again near the range reported for analogous compounds $(101-104^\circ)$.^{33,34b,35} The C-C bond lengths in the cyclohexadienyl ring (excluding C6-C7 and C9-C7) have an average value of 1.42 Å. This value is only slightly longer than the average C-C bond length of 1.41 Å in the benzene ring of [CpRu(BT)]BF₄¹⁶ and within the range of analogous bond distances in other cyclohexadienyl complexes (1.40-1.44 Å).^{33,34}

The average Ru-C distance for C4, C5, C6, C8, and C9 is 2.19 Å. The average value for the six carbons of the benzene ring bonded to Ru in $[CpRu(BT)]BF_4$ is 2.22 Å.¹⁶ The BT ligand in $[CpRu(BT)]BF_4$ showed evidence of ring slippage³⁶ (the average Ru-C₅C₆ distance minus the average Ru-C8C9 distance = 0.07 Å). This slippage is also apparent in 6 but is of a much smaller magnitude (= 0.04 Å). The planes of the cyclohexadienyl and Cp rings are essentially parallel (dihedral angle = 2.8° ± 1.9°).

H⁻ Abstraction from [Cp*Ir(BT•H)]⁺, 2 and CpRu(BT•H), 6 To an NMR tube containing 2 (8.0 mg, 0.014 mmol) was added d_6 -acetone (0.3 mL) and cyclohexane (0.1 µL). The ¹H NMR spectrum was obtained and then HBF₄•Et₂O (20 µL, 0.14 mmol) was added. The reaction, eq. 5, was monitored by ¹H

	Bond Di	istances (Å)	
Ru-C4	2.176(3)	C3-C8	1.485(4)
Ru-C5	2.155(3)	C4-C8	1.427(4)
Ru-C6	2.195(3)	C4-C5	1.419(4)
Ru-C8	2.204(3)	C5-C6	1.416(4)
Ru-C9	2.227(3)	C6-C7	1.509(4)
Ru-C10	2.194(3)	C7-C9	1.493(4)
Ru-C11	2.185(3)	C8-C9	1.424(4)
Ru-C12	2.191(3)	C10-C11	1.385(5)
Ru-C13	2.207(3)	C11-C12	1.415(5)
Ru-C14	2.198(3)	C12-C13	1.415(5)
S-C2	1.723(4)	C13-C14	1.397(5)
S-C9	1.764(3)	C14-C10	1.412(5)
C2-C3	1.341(4)		
	Bond	ngles (°)	
S-C2-C3	115.5(3)	C7-C9-C8	120.9(2)
C2-C3~C8	110.5(3)	C9-C8-C4	118.3(3)
C3-C8-C9	112.7(2)	C8-C4-C5	117.0(3)
C8-C9-S	109.3(2)	C10-C11-C12	108.9(3)
C9-S-C2	91.9(1)	C11-C12-C13	107.0(3)
C4-C5-C6	119.9(3)	C12-C13-C14	107.9(3)
C5-C6-C7	119.6(3)	C13-C14-C10	108.4(3)
6-C7-C9 100.6(2)		C14-C10-C11	107.8(3)

-

• •

Table 3.6. Bond distances and angles for CpRu(BT•H), 6

.

...

NMR over 43 h until all of 2 had reacted to form $[Cp*Ir(BT)](BF_4)_2$.

$$[Cp*Ir(BT•H)]BF_{4} + HBF_{4}•Et_{2}0 \qquad \frac{d_{6}-acetone}{43 h} > [Cp*Ir(BT)](BF_{4})_{2} + H_{2} \qquad (5)$$

The integrals corresponding to the relative amounts of isomers A-D of 2 and $[Cp*Ir(BT)]^{2+}$, relative to an internal integration standard (cyclohexane), were determined from the ¹H NMR spectra obtained during the reaction. The percentages of A-D in 2 before addition of ${\rm HBF}_4{\,}{\rm eEt}_2{\rm O}$ were 63, 24, 7, and 6%. After 5.5 h isomer D was no longer observed and the percentages of A-C were 82, 14, and 4%. After 20 h only A and B were present (92 and 8%, respectively) and peaks due to uncoordinated BT were present in the spectrum. This is a result of acetone displacement of BT from $[Cp*Ir(BT)]^{2+}$. After 24 h only A, $[Cp*Ir(BT)]^{2+}$ and BT were present in the solution. By comparing integrals for A-D and $[Cp*Ir(BT)]^{2+}$ it is clear that isomerization of B-D to A is not occurring under these conditions and that this reaction occurs by preferential H⁻ abstraction from isomers B-D relative to A. Reports of other selective H⁻ abstraction reactions have not been published, and it is not clear what factors determine the observed selectivity. Complex 2 does not react with $(Ph_3C)BF_4$.

The reaction of 6 with $(Ph_3C)BF_4$ is shown in eq. 6.

$$CpRu(BT \cdot H) + (CPh_3)BF_4 \xrightarrow{CH_2C_2} [CpRu(BT)]BF_4 + HCPh_3$$
(6)
6

This reaction was also monitored by ${}^{1}H$ NMR. The spectrum of a solution of

6 (4 mg, 0.01 mmol) in CD_2Cl_2 (0.3 mL) was obtained and then $(Ph_3C)BF_4$ (6.1 mg, 0.018 mmol) was added. A spectrum obtained after 1 h showed that all of 6 had reacted and that $[CpRu(BT)]^+$ was the only BT-containing product. When approximately half of 6 had reacted, the relative amounts of A and B were 85 and 15% (only trace amounts of C and D were observed at this time) compared to 66 and 34% of A and B in 6 before addition of $(CPh_3)BF_4$. Thus, this reaction also occurs selectively as observed for the reaction of 2 with HBF_4•Et_20.

Preparation of $[Cp*Ir(BT+Nuc)]^+$ and $[Cp*Ir(3-MeBT+Nuc)]^+$ (Nuc = OMe. $CH(CO_2Me)_2$ and SEt), 7-12 These air-stable compounds were prepared by reaction of $[Cp*Ir(BT)]^{2+}$ or $[Cp*Ir(3-MeBT)]^{2+}$ with the nucleophiles as described in eq. 2 and characterized by their elemental analyses (Table 3.3), 1 H NMR spectra (Table 3.4) and in some cases by their molar conductivities. The 1 H NMR spectra were assigned by analogy to 2 and 3. Selective decoupling experiments were used to confirm the assignments for 9 and 10. The ¹H NMR spectra show that addition of MeO⁻, $(MeO_2C)_2HC^-$ and EtS⁻ to either $[Cp*Ir(BT)]^{2+}$ or $[Cp*Ir(3-MeBT)]^{2+}$ results in the production of four isomers as was observed for the H⁻ addition reactions. The percentages of these isomers, A-D, were determined by integration of the 1 H NMR spectra of the compounds and are presented in Table 3.5. The methoxide and thioethoxide nucleophiles show a stronger preference for attack at C7 than H⁻. The malonate anion shows approximately the same selectivity as H⁻. The 3-Me group does not appear to cause major changes in the distributions of isomers.

The addition of an excess of $(Ph_3C)BF_4$ to an NMR tube solution of 7 in d₆-acetone results in immediate reaction to regenerate the iridium BT dication as shown in eq. 7.

$$[Cp*Ir(BT•OMe)]^{+} + Ph_{3}C^{+} \quad \frac{d_{6}-acetone}{10 \text{ min}} > [Cp*Ir(BT)]^{2+} + Ph_{3}COMe$$
(7)
7

The only BT containing product observed in the 1 H NMR spectrum was the iridium dicationic complex.

The malonate adduct, 9, also undergoes an abstraction reaction, eq. 8. A solution of 9 (21 mg, 0.031 mmol) in d_6 -acetone (0.3 mL) was

$$[Cp*Ir(BT \cdot CH(CO_2Me)_2)]^+ + HBF_4 \cdot Et_2O \xrightarrow{d_6-acetone}{5.5 h} [Cp*Ir(BT)]^{2+} + H_2C(CO_2Me)_2$$
(8)

prepared in an NMR tube. After obtaining the ¹H NMR spectrum, HBF₄·Et₂O (20 μ L, 0.14 mmol) was added and the NMR spectrum was obtained periodically for 5.5 h at which time all of **9** had reacted. The BT iridium dication was the only BT-containing product. Cleavage of the C-C bond in **9** might seem surprising, however, abstractions of exo carbon groups by electrophiles have been reported. Semmelhack et al. found that $[Cr(CO)_3(n^5-C_6H_6\cdot R)]^-$ complexes (R = CN, CH₂CH, C(CH₃)₂CN, CH(CO₂Et)₂, and CH₂Ph for example) react with electrophiles (CH₃I, benzophenone, Ph₃C⁺, Et₃B, acetic acid, CF₃CO₂H, H₂O) to produce Cr(CO)₃(n-C₆H₆) and the reacted carbanion.^{34a,37}

Reactions of [Cp*Ir(BT)]^{2+} with Phosphines The reaction of PMe_3 with a CD_3NO_2 solution of $[Cp*Ir(BT)]^{2+}$ was monitored by ¹H NMR. The resonances in the spectrum of the quantitatively-produced yellow $[Cp*Ir(BT•PMe_3)]^{2+}$, 13 were assigned by analogy to 2. The assignments were verified by selective decoupling experiments and also by synthesis of $[Cp*Ir(d_2-BT•PMe_3)]^{2+}$. The ¹H NMR spectrum of the deuterated product exhibited changes in the splitting patterns and peak intensities expected for a compound with deuterium at the 2- and 7-positions. The four isomers, A-D, were produced in the relative amounts given in Table 3.5. The stronger preference for C7 addition in this reaction (relative to H⁻ and (MeO_2C)_2HC⁻) is similar to that observed for the MeO⁻ and EtS⁻ addition reactions. Complex 13 can be isolated as a yellow oil by addition of Et₂O to the reaction mixture.

If only half an equivalent of PMe_3 is added, the relative amounts of A and B in 13 are the same as those observed when an excess of PMe_3 is added. Compound 13 does not undergo further addition of PMe_3 to form a bis phosphine complex even when a three-fold excess of the phosphine is added to 13. There is no reaction between PMe_3 and $[CpRu(BT)]^+$.

Nucleophilic addition of PPh_2Me to $[Cp*Ir(BT)]^{2+}$ also occurs. The broadness of the peaks in the ¹H NMR spectrum of $[Cp*Ir(BT•PPh_2Me)]^{2+}$ precluded the determination of the chemical shifts for the minor isomers and the percentages of isomers present. However, the positions of the resonances for the major isomers were quite similar to those observed for 13A suggesting that an analogous complex had resulted from the reaction. In contrast to 13, $[Cp*Ir(BT•PPh_2Me)]^{2+}$ could not be isolated. Addition

of Et_2O to a CD_3NO_2 solution of the PPh₂Me adduct precipitates [Cp*Ir(BT)]²⁺ suggesting that PPh₂Me is bound less strongly than PMe₃ in 13. The [Cp*Ir(BT)]²⁺ complex (1.7 mg, 2.3 µmol) does not react with PPh₃ (0.6 mg, 2.3 µmol) in CD₃NO₂ (0.25 mL).

Double Nucleophilic Addition Reactions of $[Cp*Ir(BT)]^{2+}$ and $[Cp*Ir(3-MeBT)]^{2+}$ A compound tentatively identified as $Cp*Ir(BT•H_2)$ was produced by reaction of $[NaA1H_2(OCH_2CH_2OMe)_2]$ (0.20 mL of a 0.058 M solution in benzene, 0.012 mmol) and 2 (8.5 mg, 0.016 mmol) in benzene (3 mL) at 25°C. Filtration of the reaction mixture followed by evaporation of the filtrate in vacuo produced an orange-yellow oil. The ¹H NMR spectrum of the complex (CDC1₃) was quite complex and definitive assignments of the resonances were not made. However, the number and different intensities of the resonances suggested that more than one isomer of the product was present, which would seem reasonable for H⁻⁻ addition to the four isomers of 2. Peaks at m/e 464, 462, and 360 corresponding to M⁺, M⁺-H₂, and M⁺-C₈H₈, respectively, were observed in the mass spectrum (EIMS) of the oil.

The addition of H⁻ to 4 (6.2 mg, 0.011 mmol) by reacting an excess of $Na[A1H_2(OCH_2CH_2OMe)_2]$ (0.1 mL of a 3.4 M solution in toluene, 0.34 mmol) in Et₂O produced a yellow solution. Filtration of the reaction mixture and evaporation of the solvent from the filtrate in vacuo yielded a tan oil. The ¹H NMR spectrum (CDCl₃) of the oil was complex and the resonances were not assigned, but the pattern and intensities of the peaks imply that more than one isomer of the product was produced in this

reaction. The proposed product, $Cp*Ir(3-MeBT \cdot H_2)$ was characterized by its mass spectrum (EIMS; m/e, 478 (M⁺), 476 (M⁺-H₂), 360 (M⁺-C₉H₁₀)).

The complex $Cp*Ir(BT \cdot (OMe)_2)$ was synthesized from NaOMe (from 2 mg Na, 0.07 mmol) and 7 (9.8 mg, 0.017 mmol) stirring in MeOH (6 mL) at RT for 19 h. The solution was evaporated to dryness in vacuo and the resulting residue extracted with Et_20 . The Et_20 extract was filtered and the filtrate evaporated in vacuo to give a tan oil. The product was identified by its mass spectrum (EIMS; m/e, 524 (M⁺), 492 (M⁺-0CH₃), 462 (M⁺-2 0CH₃)).

These three complexes, $Cp*Ir(BT•H_2)$, $Cp*Ir(3-MeBT•H_2)$ and $Cp*Ir(BT•(OMe)_2)$ are very unstable; the initially yellow compounds slowly decompose under N₂ (within ~1-10 h). An n⁴-coordination mode of the BT•H₂ (or BT•(OMe)₂) ligand would be the most reasonable for these neutral complexes. The analogous $Cp*Ir(n^4-C_6H_6•H_2)^{29}$ was characterized by mass spectrometry, and ¹H and ¹³C NMR spectra, but it was too unstable for elemental analysis.

Reactions of [Cp*Ir(T)]^{2+} with Phosphines and NaBEt₃H The thiophene ring in [Cp*Ir(T)](BF_4)_2 is even more reactive towards nucleophilic attack than the BT ligand in [Cp*Ir(BT)]^{2+}. The reactions of [Cp*Ir(T)]^{2+} and phosphines were studied by NMR experiments. When PMe₃, PPh₂Me, and PPh₃ were added to solutions of [Cp*Ir(T)]^{2+} in CD_3NO_2, the ¹H NMR spectra of the resulting NMR tube solutions showed signals³⁸ corresponding to an n^4-T complex, as shown in eq. 10, as the only product. The analogous [Cp*Rh(T)]^{2+} also reacted with PMe₃ to give

$$[Cp*Ir(T)]^{2+} + PR_{3} \xrightarrow{CD_{3}NO_{2}} H \xrightarrow{H_{3}} H$$

$$PR_{3} = PMe_{3}, PPh_{2}Me, PPh_{3} H \xrightarrow{R_{3}P} H$$

$$(10)$$

an n^4 -complex as the only product (in a CD_3NO_2 solution monitored by ¹H NMR).³⁹ Reaction of $P(OMe)_3$ with $[Cp*Ir(T)]^{2+}$ in CD_3NO_2 resulted in the formation of $[Cp*Ir(T•P(0)(OMe)_2)]^+$ which was identified by its ¹H NMR spectrum (the $P(0)(OMe)_2$ resonance integrated to 6H as opposed to 9H which would have been expected for the $P(OMe)_3$ adduct).⁴⁰ This reaction probably proceeds by initial addition of $P(OMe)_3$ to the T ring of $[Cp*Ir(T)]^{2+}$ followed by a Michaelis-Arbuzov type rearrangement, as shown in eq. 11. The proposed phosphonium intermediate was not observed in the

$$\left[Cp*Ir(T) \right]^{2+} + P(OMe)_{3} \frac{CD_{3}NO_{2}}{Cp*Ir(T \cdot P(OMe)_{3})} \right]^{2+}$$

$$\frac{H_{2}O}{P} \left[Cp*Ir(T \cdot P(O)(OMe)_{2}) \right]^{+} + MeOH + H^{+}$$
(11)

¹H NMR spectrum of the reaction mixture but an H₂O peak was. The reactions of $[(n-C_6H_6)_2Ru]^{2+,41}$ and $[(n-C_5Me_4Et)Rh(n-C_6H_6)]^{2+,42}$ with P(OMe)₃ also result in the formation of a phosphonate product. The $[Cp*Ir(T)]^{2+}$ complex does not react with P(OPh)₃ in CD₃NO₂ at 25°C.

The reaction of $[Cp*Ir(T)]^{2+}$ (14 mg, 0.024 mmol) and NaBEt₃H (40 μ L of a 1 M solution in THF, 0.040 mmol) in benzene (5 mL) produced a gold-colored solution after 5 min at RT. The solution was filtered and the

solvent removed from the filtrate in vacuo which gave an orange residue. The ¹H NMR spectrum (CDCl₃) of the product showed signals at 4.78 (m, 2H), 4.31 (m, 2H), and 1.99 ppm (s, 15H). The splitting patterns of the 4.78 and 4.31 ppm resonances are similar to those observed for T but the chemical shifts occur at much higher field than those of T (CDCl₃: 7.35 (m; H2, H5), 7.14 (m; H3, H4)).⁴³ The ¹H NMR spectrum suggests that the reaction which occurred was not H⁻ addition to the T ligand but rather a $2e^{-}$ reduction of the iridium complex as shown in eq. 12. Other reductions

$$[Cp*Ir(T)](BF_{4})_{2} + 2 NaBEt_{3}H \qquad \frac{benzene}{5 min} > Cp*Ir(n^{4}-T) + 2 NaBF_{4}$$
(12)
+ 2 BEt_{2} + H_{2}

of transition metal complexes by NaBEt₃H have been reported.⁴⁴ The proposed identity of the product is supported by its mass spectrum (EIMS; m/e, 412 (M⁺), 360 (M⁺-C₄H₄), 84 (T⁺)) and also by its preparation from $[Cp*Ir(T)]^{2+}$ and an excess of $Cp_2Co^{45,46}$ in CH_2Cl_2 at 25°C, eq. 13. The

$$[Cp*Ir(T)]^{2+} + 2 Cp_2 Co \qquad \frac{CH_2 Cl_2}{5 \min} > Cp*Ir(n^4-T) + 2 Cp_2 Co^+$$
(13)

 n^4 -T complex is relatively unstable and has not been characterized by elemental analysis.

The n^4 -bonding mode is proposed on the basis of the ¹H NMR chemical shifts for the T ligand and by analogy to the Cp*Ir(n^4 -C₆Me₆) complex.⁴⁷ The T resonances in the ¹H NMR spectrum (CDCl₃) of Cr(CO)₃(n-T) occur at 5.59 (m; H3, H4) and 5.37 ppm (m; H2, H5).⁴³ An n^4 -coordination of T

would make the ligand more diene-like and consequently shift the 1 H resonances to higher field. The Cp*Ir(4 -C₆Me₆) complex can be synthesized by electrochemical or chemical reduction of [Cp*Ir(4 -C₆Me₆)]²⁺ and the 4 -bonding of C₆Me₆ is clearly established by its 1 H NMR spectrum (2.19 (s, 6H), 1.74 (s, 6H), 1.66 (s, 6H), and 1.91 ppm (s, 15H)) but neither mass spectral nor microanalytical data were reported for this compound. 4 -Arene bonding to transition metals has been reported for other complexes^{32,36,48} but Cp*Ir(4 -T) represents a novel coordination mode for the T ligand.⁴⁹

A cyclic voltammogram of $[Cp*Ir(T)]^{2+}$ shows irreversible cathodic peaks at -0.33 and -0.53 V (Table 3.7) possibly due to production of Cp*Ir(T). The $[Cp*Rh(T)]^{2+}$ complex also has two irreversible cathodic peaks in its cyclic voltammogram. The cyclic voltammogram of $[Cp*Rh(BT)]^{2+}$ was similar to that observed for $[Cp*Rh(T)]^{2+}$; however, the electrochemical reduction of $[Cp*Ir(BT)]^{2+}$ was quasi-reversible. The chemically reversible reduction of $[Cp*Ir(C_6Me_6)]^{2+}$ to $[Cp*Ir(n^4-C_6Me_6)]^{41}$ suggests that $n^4-C_6Me_6$ bonding might be more stable than n^4 -thiophene bonding in Cp*Ir(T).

Table 3.7. Cyclic voltammetic data^a

Complex	Cathodic Peak Potential(s) ^{b,C} (V)		
[Cp [*] Rh(T)](PF ₆) ₂	-0.56, -0.77, i		
[Cp [*] Rh(BT)](PF ₆) ₂	-0.43, -0.79, i		
[Cp [*] Ir(T)](BF ₄) ₂	-0.33, -0.53, i		
[Cp [*] Ir(BT)](BF ₄) ₂	-0 .54, q		

 $^a\!A11$ measurements made in $\rm CH_3NO_2$, scan rate = 500 mV/sec, with 0.1 M $\rm Bu_4NPF_6$ as the supporting electrolyte.

^bReferenced to Ag/AgC1 (3.0 M NaC1).

^Ci = irreversible, q = quasi-reversible.

CONCLUSIONS

Reactions of transition metal model complexes of π -bound T with nucleophilic species such as hydride and sulfide, that are likely to be on HDS catalyst surfaces, have provided a basis for understanding the reactivity of T adsorbed on HDS catalysts.¹¹ Hydride addition to [CpRu(T)]⁺ resulted in C-S bond cleavage^{11C,d} and to [Mn(CO)₃(T)]⁺ produced Mn(CO)₃(T•H)^{11a} which could be protonated to give a 2,3dihydrothiophene (2,3-DHT) complex. The intermediacy of 2,3-DHT in the HDS of T has been proposed⁵⁰ and cleavage of the C-S bond of T is certainly an important step in the HDS process. Other types of reactions which occur over HDS catalysts, such as deuterium exchange, have been accounted for by studies of [CpRu(n-T)]⁺ compounds. Thus, π -thiophene complexes serve as very useful models for reactions of T that might occur on HDS catalysts.

In attempts to model reactions of benzo[b]thiophene on HDS catalysts, we find that BT prefers to π -coordinate via the benzene, rather than the thiophene ring, in [CpRu(BT)]⁺, [Cp*Ir(BT)]²⁺ and [Cp*Rh(BT)]²⁺ complexes. This type of coordination activates C4-C7 towards reactions with H⁻ and other nucleophiles giving primarily C7 adducts. Products which might lead to or are similar to proposed intermediates in the HDS of BT, such as 2,3-dihydrobenzothiophene⁵¹ or thiophenols,^{7a,52} were not observed. Thus, the π -arene-bonded complexes do not seem to account for the HDS reactivity of BT. Better model complexes might involve coordination of all or part of the thiophene ring of BT to the transition metal center.

REFERENCES

- (1) Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract No. W-7405-Eng-82. This research was supported by the Office of Basic Energy Sciences, Chemical Sciences Division.
- (2) (a) Schuman, S. C.; Shalit, H. in "Catalysis Reviews"; (Heinemann, H. ed.); Marcel Dekker, Inc.: New York, 1971; p. 246. (b)
 McCulloch, D. C. in "Applied Industrial Catalysis": (Leach, B. E. ed.); Academic Press: New York, 1983; p. 69.
- (3) Satterfield, C. N. "Heterogeneous Catalysis in Practice"; McGraw-Hill Book Co.: New York, 1980; p. 260.
- (4) (a) Aksenov, V. S.; Kamyanov, V. F. in "Organic Sulfur Chemistry";
 (Freidina, R. Kho; Skorova, A. E. eds.); Pergamon Press: New York,
 1981; p. 201. (b) Thompson, C. J. in "Organic Sulfur Chemistry";
 (Freidina, R. Kh.; Skorova, A. E. eds.); Pergamon Press: New York,
 1981; p. 9.
- (5) Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. "Chemistry of Catalytic Processes"; McGraw-Hill Book Co.: New York, 1979, p. 392.
- (6) (a) Lyapina, N. K. <u>Russian Chemical Reviews</u> 1982, <u>51</u>(2), 189. (b)
 Hoog, H.; Reman, G. H.; Smithuysen, W. C. B. <u>Proc. 3rd World Pet</u>.
 <u>Congress (The Hague)</u> 1951, Section IV, 282.

- (7) (a) Porkorny, D.; Zdrazil, M. <u>Coll. Czech. Chem. Commun</u>. 1981, <u>46</u>, 2185. (b) Nag, N. K.; Sapre, A. V.; Broderick, D. H.; Gates, B. C. <u>J. Catal</u>. 1979, <u>57</u>, 509. (c) Kilanowski, D. R.; Gates, B. C. <u>J. Catal</u>. 1980, <u>62</u>, 70.
- (8) Schuit, G. C. A.; Gates, B. C. AIChE Journal 1973, 19, 177.
- (9) (a) Cowley, S. W. Ph.D. Thesis, Southern Illinois University, Carbondale, 1975. (b) Sapre, A. V.; Broderick, D. H.; Fraenkel, D.; Gates, B. C.; Nag, N. K. <u>AIChE Journal</u> 1980, <u>26</u>, 690. (c) Singhal, G. H.; Espino, R. L.; Sobel, J. E. <u>J. Catal</u>. 1981, <u>67</u>, 446. (d) Zdrazil, M. <u>Coll. Czech. Chem. Commun</u>. 1975, <u>40</u>, 3491. (e) Zdrazil, M. <u>Coll. Czech. Chem. Commun</u>. 1977, 42, 1484.
- (10) (a) Schoofs, G. R.; Presont, R. E.; Benziger, J. B. <u>Langmuir</u>
 1985, <u>1</u>, 313. (b) Edwards, T.; McCarroll, J. J.; Pilkethly, R. C.
 <u>Ned. Tijdschr. Vacuumtech</u>. 1970, <u>8</u>, 162. (c) Sexton, B. A. <u>Surf.</u>
 <u>Sci</u>. 1985, <u>163</u>, 99. (d) Zaera, F.; Kollin, E. B.; Gland, J. L.
 <u>Surf. Sci</u>. 1987, <u>184</u>, 75.
- (11) (a) Lesch, D. A.; Richardson, J. W.; Jacobson, R. A.; Angelici, R. J. J. Am. Chem. Soc. 1984, 106, 2901. (b) Spies, G. H.; Angelici, R. J. J. Am. Chem. Soc. 1985, 107, 5569. (c) Hachgenei, J. W.; Angelici, R. J. Angew. Chem., accepted for publication. (d) Spies, G. H.; Angelici, R. J. Organometallics 1987, in press. (e) Sauer, N. N.; Angelici, R. J. Organometallics, 1987, <u>6</u>, 1146. (f) Huckett, S. C.; Sauer, N. N.; Angelici, R. J. Organometallici, R. J. Organometallics 1987, <u>6</u>, 591. (g) Huckett, S. C.; Eckman, M. J.; Schrader, G. L.; Angelici, R. J. J. Catal., manuscript in preparation.

- (12) (a) Mitchell, P. C. H. <u>Catalysis</u> 1981, <u>4</u>, 175. (b) Vasudevans, S.; Thomas, J. M.; Wright, C. J.; Sampson, C. <u>J. Chem. Soc., Chem.</u> <u>Commun. 1982, 418. (c) Givens, K. E.; Dillard, J. G. <u>J. Catal.</u> 1984, <u>86</u>, 108. (d) Millman, W. S.; Segawa, K. L.; Smrz, D.; Hall, W. K. Polyhedron 1986, 5, 169.
 </u>
- (13) (a) Henry, W. P.; Rieke, R. D. <u>J. Am. Chem. Soc</u>. 1983, <u>105</u>, 6314.
 (b) Semmelhack, M. F.; Wulff, W.; Garcia, J. L. <u>J. Organomet. Chem</u>. 1982, <u>240</u>, C5.
- (14) Shirley, D. A.; Cameron, M. D. J. Am. Chem. Soc. 1952, 74, 664.
- (15) Kang, J. W.; Moseley, K.; Maitlis, P. M. <u>J. Am. Chem. Soc</u>. 1969, <u>91</u>, 5970.
- (16) Huckett, S. C.; Angelici, R. J. <u>Organometallics</u>, submitted for publication.
- (17) Darensbourg, M. Y.; Darensbourg, D. J.; Barros, H. C. C. <u>Inorg.</u> <u>Chem. 1978, 17, 297.</u>
- (18) Kim, H. P.; Angelici, R. J. Organometallics 1986, 5, 2489.
- (19) Hegedus, L. S.; Inoue, Y. J. Am. Chem. Soc. 1982, <u>104</u>, 4917.
- (20) Lind, J. E., Jr.; Abdel-Rahim, H. A. A.; Rüdich, S. W. <u>J. Phys.</u> Chem. 1966, <u>70</u>, 3610.
- (21) X-ray data collection and structure solution were carried out at Iowa State Molecular Structural Laboratory. All calculations were performed on a Digital Equipment Corp. Micro VAX II computer using the CAD4-SDP package. (Enraf-Nonius Structure Determination Package; Enraf-Nonius, 1976: Delft, Holland.)

.

- (22) Neutral-atom scattering factors and anomalous scattering corrections were taken from <u>International Tables for X-ray Crystallography</u>; The Kynock Press: Birmingham, England, 1974; Volume IV.
- (23) Johnson, C. K.; U.S. Atomic Energy Commission Report ORNL-3794
 (Second Revision with Supplemental Instructions); Oak Ridge National Laboratory: Oak Ridge, TN, 1970. Thermal ellipsoids are drawn at a 50% probability level.
- (24) (a) ¹H NMR (CD₃NO₂), δ: 7.79 (d, H7), 7.69 (d, H4), 7.32 (m, H6), 7.26 (m, H5), 7.04 (s, H3), 2.59 (d, C2-CH₃). (b) ¹³C[¹H}NMR (CDC1₃), δ: 140.8 (C2), 140.5 (C8), 139.7 (C9), 124.0 (C5), 123.3 (C6), 122.5 (C4), 122.0 (C7), 121.6 (C3), 16.0 (C2-CH₃). Clark, P. D.; Ewing, D. F.; Scrowston, R. M. <u>Org. Mag. Res</u>. 1976, 8, 252.
- (25) Brevard, C.; Kintzinger, J. P. in "NMR and the Periodic Table"; (Harris, R. K.; Mann, B. E. eds.); Academic Press: New York, 1978; p. 110.
- (26) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. "Spectrophotometric Identification of Organic Compounds", John Wiley and Sons: New York, 1981; p. 210.
- (27) (a) Honig, E. D.; Quin-Jin, M.; Robinson, W. T.; Willard, P. G.; Sweigart, D. A. <u>Organometallics</u> 1985, <u>4</u>, 871. (b) Faller, J. W. <u>Inorg. Chem</u>. 1980, <u>19</u>, 2857. (c) Herberich, G. E.; Schwarzer, J. <u>Angew. Chem., Int. Ed. Engl.</u> 1969, <u>8</u>, 143.
- (28) Khand, I. V.; Pauson, P. L.; Watts, W. E. <u>J. Chem. Soc. (C)</u> 1969, 2024.

and the second second

- (29) Grundy, S. L.; Smith, A. J.; Adams, H.; Maitlis, P. M. <u>J. Chem.</u> Soc., Dalton Trans. **1984**, 1747.
- (30) (a) Semmelhack, M. F.; Clark, G. R.; Farina, R.; Saeman, M. <u>J. Am</u>. <u>Chem. Soc</u>. **1979**, <u>101</u>, 217. (b) Oprunenko, Y. F.; Malyvgina, S. G.; Ustynyuk, Y. A.; Ustynyuk, N. A. <u>Izv. Akad. Nauk SSSR, Ser. Khim</u>. **1984**, 33, 2405.
- (31) Kozikowski, A. P.; Isobe, K. <u>J. Chem. Soc., Chem. Commun</u>. 1978, 1076.
- (32) Rieke, R. D.; Henry, W. P.; Arney, J. S. <u>Inorg. Chem</u>. 1987, <u>26</u>,
 420.
- (33) (a) Mawby, A.; Walker, P. J. C.; Mawby, R. J. <u>J. Organomet. Chem</u>.
 1973, <u>55</u>, C39. (b) Mathew, M.; Palenik, G. J. <u>Inorg. Chem</u>.
 1969, <u>8</u>, 1950.
- (34) (a) Semmelhack, M. F.; Hall, H. T., Jr.; Farina, R.; Yoshifuji, M.;
 Clark, G.; Bargar, T.; Hirotsu, K.; Clardy, J. <u>J. Am. Chem. Soc</u>. **1979**, <u>101</u>, 3535. (b) Werner, H.; Werner, R.; Burschka, C. <u>Chem.</u>
 <u>Ber</u>. **1984**, <u>117</u>, 152.
- (35) (a) Churchill, M. R.; Scholer, F. E. <u>Inorg. Chem</u>. 1969, <u>8</u>, 1950.
 (b) VanVurren, P. J.; Fletterick, R. J.; Meinwald, J.; Hughes, R. E. <u>J. Am</u>. <u>Chem. Soc</u>. 1971, <u>93</u>, 4394.
- (36) Muetterties, E. L.; Bleeke, J. R.; Wucherer, E. J.; Albright, T.
 A. <u>Chem. Rev.</u> 1982, <u>82</u>, 499.
- (37) Semmelhack, M. F.; Hall, H. T., Jr.; Yoshifuji, M.; Clark, G. <u>J.</u> <u>Am. Chem. Soc.</u> 1975, <u>97</u>, 1247.

.....

- (38) All spectra were obtained in CD_3NO_2 and were assigned by analogy to $[Mn(CO)_3(T \cdot PBu_3)]^+$.^{1Oa} (a) PMe_3 : δ 6.47 (m, H5), 6.44 (m, H4), 6.06 (d, H2, J = 2.6 Hz), 4.54 (m, H3), 2.20 (s, Cp*), 1.85 (d, PMe_3 , $J_{H-P} = 14.1$ Hz). (b) PPh_2Me : δ 8.04-7.73 (m, PPh_2Me), 6.64 (m, H5), 6.12 (m, H4), 6.01 (d, H2, J = 1.1 Hz), 4.58 (m, H3), 2.16 (s, Cp*), 2.50 (d, PPh_2Me , $J_{H-P} = 13.3$ Hz). (c) PPh_3 : δ 8.04-7.79 (m, PPh_3), 7.08 (m, H5), 5.94 (m, H4), 5.89 (m, H2), 4.68 (m, H3), 2.16 (s, Cp*).
- (39) The spectrum was obtained in CD_3NO_2 and assigned by analogy to $[Mn(CO)_3(T \cdot PBu_3)]^+$.^{10a} & 6.66 (m, H5), 6.20 (m, H4), 5.64 (d, H2, J = 2.42 Hz), 4.49 (m, H3), 2.08 (s, Cp*), 1.82 (d, PMe_3, J_{H-P} = 14.2 Hz).
- (40) (CD_3NO_2): δ 6.34 (br s, H5), 6.23 (m, H4), 5.40 (m, H2), 4.25 (m, H3), 3.74 (d, PO(OMe)₂, J_{H-P} = 12.1 Hz), 2.18 (s, Cp*).
- (41) Sweigart, D. A. J. Chem. Soc., Chem. Commun. 1980, 1159.
- (42) Bailey, N. A.; Blunt, E. H.; Fairhurst, G.; White, C. <u>J. Chem.</u> <u>Soc.</u>, <u>Dalton Trans</u>. 1980, 829.
- (43) Guilard, R.; Tirouflet, J.; Fournari, P. <u>J. Organomet. Chem</u>. 1971, <u>33</u>, 195.
- (44) Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L.; Parker, D.
 W.; Selover, J. C. <u>Inorg. Chem</u>. **1979**, <u>18</u>, 553.
- (45) The Cp_2Co was prepared by Na/K alloy reduction of $[Cp_2Co]PF_6^{46}$ dissolved in THF (45 min at RT). The THF solution was filtered and the filtrate evaporated in vacuo to give a pink-purple residue of Cp_2Co .

- (46) Sheats, J. E.; Dierkes, J.; de Marco, L. <u>Organomet. Synth</u>. 1986, <u>3</u>,
 84.
- (47) Bowyer, W. J.; Geiger, W. E. J. Am. Chem. Soc. 1985, 107, 5657.
- (48) (a) Kang, J. W.; Childs, R. F.; Maitlis, P. N. <u>J. Am. Chem. Soc</u>.
 1970, <u>92</u>, 720. (b) Wakatsuki, Y., Yamazaki, H. <u>J. Organomet. Chem</u>.
 1974, <u>64</u>, 393. (c) Albright, J. O.; Datta, S.; Dezube, B.; Kouba,
 J. K.; Marynick, D. S.; Wreford, S. S.; Foxman, B. M. <u>J. Am. Chem.</u>
 <u>Soc</u>. 1979, <u>101</u>, 611. (d) Hull, J. W.; Gladfelter, W. L.
 <u>Organometallics</u> 1984, <u>3</u>, 605.
- (49) A benzonitrile-solvated complex, [Pd(Me₄-T)Cl₂], was tentatively suggested to contain n⁴-bonded Me₄-T. Russell, M. J. H.; White, C.; Yates, A.; Maitlis, P. M. <u>J. Chem. Soc., Dalton Trans</u>. 1978, 857.
- (50) (a) Kwart, H.; Schuit, G. C. A.; Gates, B. C. <u>J. Catal.</u> 1980, <u>61</u>,
 128. (b) Kieren, P.; Kemball, C. <u>J. Catal.</u> 1965, <u>4</u>, 394.
- (51) (a) Givens, E. N.; Venuto, P. B. <u>Prep. Am. Chem. Soc., Div. Pet.</u>
 <u>Chem.</u> 1970, <u>15</u>, A183. (b) Geneste, P.; Bonnet, M.; Frouin, C.;
 Levaché, D. <u>J. Catal.</u> 1980, <u>61</u>, 277.
- (52) Landa, S.; Mrnkova, A. <u>Coll. Czech. Chem. Commun</u>. 1966, <u>31</u>, 2202.

SUPPLEMENTARY MATERIAL

.

:

:

1(-0.2763 x - 0.7076 y - 0.6503 z = 10.3401)	C9(0.3719, 11.9780, 2.7094) C8(1.7152, 11.5109, 2.6463) C4(2.1256, 10.5026, 3.5677) C5(1.1528, 10.0378, 4.4898) C6(-0.1586, 10.5716, 4.4623)	0.000(3) -0.001(3) 0.001(3) -0.001(3) 0.001(3)
2(-0.3114 x - 0.7207 y - 0.6194 z = 6.8587)	C10(-1.1401, 9.0954, 1.0635) C11(-1.0634, 8.1732, 2.0935) C12(0.2344, 7.6104, 2.1084) C13(0.9551, 8.2010, 1.0432) C14(0.1124, 9.1191, 0.4118)	-0.003(3) 0.000 0.003(3) -0.005(3) 0.005(3)
3(-0.3148 x - 0.7285 y - 0.6084 z = 10.5154)	S(0.1167, 13.1923, 1.4551) C2(1.7125, 12.9757, 0.8420) C3(2.4733, 12.0975, 1.5117) C8(1.7152, 11.5109, 2.6453) C9(0.3719, 11.9780, 2.7094)	-0.018(1) 0.011(3) 0.004(3) -0.020(3) 0.023(3)

Table 3.9. Structure factor table for CpRu(BT•H), 6

н	ĸ	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SigF	н	к	T.	Fobr	Fcalc	Ci-E						
-	-	-				-	-	-				-	-	-			51gr	H -	K -	г. 	Fobs	Fcalc	SigF
0	0	2	1575	1607	16	•	-																
ŏ	ŏ		522	523	16 2	0		13	511	517	16	0	6	15	70	73	5	0	10	7	455	451	4
Ō	ō		509	537	5	ő		14 15	188 281	191	5	0	7	1	286	291	2	0	10	8	374	372	3
Ó	Ō		844	856	24	ŏ			128	286 120	19 8	0	7	2	790	778	4		10	9	434	432	5
0	0	10	798	802	42	ŏ		ĨÖ	588	590	2	0	777	3	153	142	3		10		247	247	4
0		12	422	425	32	Ō		ĩ	1124	1145	ŝ	0	7	5	1213 385	1213	9		10		151	150	5
0		14	57	43	5	Ō	4	2	404	389	2	ŏ	÷	6	755	390 769	5 8		10		93	94	7
0		16	196	195	26	0	4	3	111	111.	2	ŏ	7	7	169	183	3		11 11	1 2	102	107	4
0	1		164	172	5	0	4	4	106	94	4	Ō	7	8	277	268	6		11	3	142 596	141 600	7
0	1		1364	1366	13	0	4	5	165	178	• 3	0	7	9	85	90	3		ii	4	321	324	3
0	1		439 681	434	3	0	4	6	230	219	3	0		10	78	83	6		īī	5	655	659	7
ŏ	i		863	687 890	5 7	0	4	7 8	389	389	3	0	7	11	146	147	3		11	6	326	335	3
ō	ĩ		966	974	6	0	4	9	118	101	3	0		12	331	332	6		11	7	297	307	4
Ó	ī		290	293	2	ŏ	-	10	589	570	3	0		13	63	59	4		11		139	145	3
0	ī		558	556	ő	ŏ		11	187 535	179 529	4	. 0		14	333	342	4	0	11	11	201	199	4
0	1	9	344	337	4	Õ		12	85	81	3	0	8	15 0	105	103	3		11		36	50	19.
0		10	135	128	9	õ		13	109	109	6	ő	8	-	1337	1335	8		11		265	270	9
0		11	250	255	9	Ō		14	79	80	7	ŏ	8	1 2	93 787	75	2		12		335	348	3
0		12	561	570	36	0		15	219	213	. 8	· ŏ	8	ŝ	222	787 213	5 5		12	1	646	672	3
0 0		13	72	83	4	0		16	46	54	7	ŏ	8	4	71	77	2		12 12	2 3	82	80	3
0		14	474	476	42	0	5	1	388	399	3	ō	8	5	104	105	ž	0	12	4	267 71	263 74	3
Ň	1	15 16	· 92 202	88	8	0	5	2	204	178	2	0	8	6	368	359	6		12	5	224	237	6
ŏ	2		1330	197 1329	21 4	0	5	3	735	759	6	0	8	8	577	566	3		12	6	67	66	5
õ	2		671	657	6	0	5	4 5	455 672	468 668	6	0	8	9	41	45	6	0	12	7	279	284	ธี
0	2		1303	1308	10	ŏ	5	6	605	596	8 5	0		10	634	624	4		12	8	- 44	43	5
0	2		436	442	2	ŏ	5	7	502	500	4	0		11 12	43 284	40	6		12	9	401	408	9
0	2		486	492	2	0	5	8	153	150	3	ŏ		13	47	290 50	4 6		12		126	122	3
0	2		49B	498	2	0	5	9	96	91	3	ō		14	71	65	4		12 12		362 56	368	12
0	2		810	818	8	0		10	41	41	7	Ō	9	1	145	139	3		13	1	280	64 287	5 3
Ő	2		626 481	618	3	0		11	390	387	4	0	9	2	726	736	5		13	ź	109	116	2
Ö		10	401	472 410	8 8	0		12	74	74	4	0	9	3	373	366	3		13	3	523	538	7
õ	2		102	99	3	0		13 14	510	514	4	0	9	4	743	739	3		13	4	301	307	3
Ō		12	256	260	8	ő		14	129 264	129 271	3	0	9	5	518	512	3		13	5	303	318	4
Ó	2	14	80	82	4	ŏ	6	0	630	624	5 2	0	9	6 7	538	526	3		13	6	271	272	9
0		16	106	101	14	ŏ	6	ĭ	1003	997	3	0	9	8	247	233	3		13	7	215	223	4
0	3		458	472	1	ŏ	6	2	847	833	5	ŏ	9	9	363 160	358	3		13	8	79	74	3
0	3		1161	1149	14	0	6	3	497	493	2	ŏ		10	133	160 130	6 3		13 13	.9	146	139	5
0	3	3	495	523	2	0	6	4	521	524	7	ŏ		ĩĩ	182	178	13		13		100 137	104 139	3
0	3	4 5	589	583	8	0	6	5	350	345	3	Ō		12	324	322	4		14	0	200	213	10 4
0	3	5	975 573	976 583	5	0	6	6	492	489	3	0	9	13	88	86	3		14	ĭ	345	358	4
ŏ	3	7	607	604	3 3	0	6	7	515	517	4	0	9		331	331	4		14	2	409	426	ż
ŏ	3		83	80	4	0	6 6	8	702	693	3		10	0	238	245	3		14	3	80	89	3
Ō	3	9	70	54	6	ő		10	462 507	448	4		10	1	279	279	3		14	4	222	236	4
0		10	141	150	3	ő		11	173	502 166	6 3		10	2	325	331	5		14	5	49	53	5
0		11	440	431	7	ŏ		12	260	259	5		10 10	3 4	468	460	3		14	6	254	270	6
0	З	12	191	189	4	Ō		13	56	57	5		10	6	133 175	130 165	3		14	7	176	185	3
											5	v	10	0	1/5	201	7.	U	14	8	361	379	4

Table 3.9. Continued

4

.

ŧ

:

.

.

<u>ч и г</u>																				
нкг	Fobs	Fcalc	SigF	н	ΚĽ	Fobs	Fcalc	SigF	н	ĸ	L	Fobs	Fcalc	SigF	н	K	r	Fobs	Parla	
				-					-	-	-				-	-	-		Fcalc	Sig
0149	249	254	7	1	1 -3	125	124	2		- ·		22.0								
0 14 10	199	200	5	î	1 -2	495	482	2 2	1	2 2		218	226	4	1		11	70	70	
0 15 2	143	152	3	ī	î -î	1363	1395	4	1			226	234	4	1		12	449	450	4
0 15 4	509	535	9	ī	īō	650	590	4	1	3-1		269	253	5	1		14	469	493	
0155	142	148	3	ī	īī	2026	1936	4	i	3-3		249 91	246 91	5	1		16	242	252	
0156	386	409	4	1		32	20	3	ī	3-3		136	135	3	1		-14	244	247	
0 15 7	132	143	6	1	1 2 1 3	772	770	2	î	3-3		416	409	2 3	1		13	58	50	
0 15 8	90	92	3	1	14	375	396	2	ī	3.		200	187	4	1		12	58	68	
0 16 0	400	416	3	1	15	215	203	2	ĩ	3.		520	511	3	i		-10	161 424	162	
0 16 1 0 16 2	130	127	3	1	16	192	193	3	ī	- <u>3</u> -		425	426	3	i		-9	440	411 435	
	294	314	4	1	17	318	319	2	1	<u>э</u> .	-6	580	583	2	ī		-8	536	521	
0166 0167	148 51	155	3	1	18	431	431	3	1	3 -		400	384	2	ĩ		-7	611	594	
0 16 8	234	49 244	7	1	1 9	552	541	3	1	3.	-4	347	355	2	ī		-6	633	640	
0 17 1	47	61	7 5	1	1 10	122	115	2	1		-3	214	218	2	1	5	-5	125	126	
0 17 2	305	323		1	$1 11 \\ 1 12$	595 90	608	3	. 1	3 .		515	517	2	1	5	-4	393	406	
0 17 3	146	160	3	i	1 12 1 13	327	90	3	1		-1	140	132	2	1		-3	288	287	
0 17 4	241	255	15	i	1 13 14	80	341 76	4	1	3	0	1204	1242	5	1		-2	458	477	
0 17 5	139	147	3	î	1 15	46	51	3 5	1 1	3	1 2	352	358	2	1		-1	323	327	
0176	198	208	4	ī	2-16	99	107	4	i	3	3	251 628	292	2	1	5	0	1193	1222	
0 18 0	312	328	4	ī	2-15	218	214	4	i	3	4	365	668 408	2	1	5	1	202	215	
0 18 1	272	282	4	ī	2-14	226	215	4	i	ž	5	225	239	2	1	55	2 3	1031	1082	
0 18 2	114	117	3.	1	2-13	341	334	4	ĩ	3	7	379	389	3	1 1	5	4	1049 152	1085	
0 18 3	197	205	5	1	2-12	354	354	4	ī	3	8	453	439	3	i	5	5	874	178 851	
1 0-15	208	191	4	1	2-11	392	390	4	1	3	9	221	216	ž	i	5	6	123	120	
1 0-13 1 0-11	689	666	4	1	2-10	437	436	3	1	3 3		601	594	3	î	5	7	382	392	
1 0 - 11 1 0 - 9	611 134	604 117	3	1	2 -9	186	178	4	1	3	11	80	74	3	ī	5	8	327	335	
1 0 -7	455	441	2 2	1	2 -B	193	179	3	1	3 3		510	519	3	ī	5	9	344	328	
10-5	987	996	2	1	2 -7	360	358	3	1	3		166	169	3	1	5	10	678	668	
1 0 - 3	1303	1340	5	1	2 -6 2 -5	561	590	2	1	3		100	100	3	1	5	11	201	204	
1 0 -1	2222	2197	4	i	2-4	793 946	778 958	2	1	3		140	138	3	1	5	12	463	464	
1 0 3	881	868	2	i	2 -3	726	958 718	2	1	4-		413	421	4	1		13	190	182	
105	962	923	2	ī	$\frac{1}{2}$ -2	1095	1080	2 5	1	4-		638	643	4	1	5	14	85	85	
107	986	967	2	ī	2-1	538	546	ĭ	1	4-3		199 132	179	3	1		15	46	53	
109	576	601	3	1	2 0	48	44	2	i		-6	194	123 193	2	1		15	177	172	
1 0 11	39	35	5	1	21	899	896	ŝ	i	-	-5	30	193	3 4	1		14	202	196	
1 0 13	336	358	3	1	22	409	390	2	î	4.		860	859	2	1		13	190	191	
1 0 15	245	256	4	1	23	440	417	2	ī		-3	218	196	2	i		12	233	. 226	
1 1-16 1 1-15	82	81	5	1	24	672	668	2	ī		-2	1435	1476	6	i		10	348 327	356 329	
1 1-15	329	314	5	1	25	1136	1121	2	1		-1.	64	59	2	i		-9	351	351	
1 1-13 1 1-12	229 99	227 102	5 3	1	26	1116	1125	2	1	4	0	684	710	2	ī		-7	94	95	
1 1-11	240	246	3 4	1	27 28	942	911	2	1	4	1	328	351	2	ĩ		-6	510	505	
1 1 -9	713	698	3	i	29	267	269	3	1	4 ·	2	551	593	2	1		-5	655	660	
1 1 -8	481	492	3	1	2 10	234 114	232	3	1	4	4	866	914	2	1		-4	693	695	
1 1 -7	1151	1131	2	i	2 11	39	106 17	2 6	1	4	5	102	91	2	1		-3	779	789	
1 1 -6	468	468	2	ī	$\frac{2}{2}$ $\frac{11}{12}$	213	231	ь 4	1	4	6	922	926	2	1		-2	413	430	
11-5	929	939	ĩ	î	2 13	177	180	4	1 1	4 4	7 8	68	41	2	1		-1	407	405	
1 1 -4	126	123	2	ī	$\frac{1}{2}$ $\frac{1}{14}$	267	277	-	-		0	725	722	3	1	6	0	481	504	

ì

н	K	Ľ	Fobs	Fcalc	SigF	н	к	L	Fobs	Fcalc	SigF	н	к	L	Fobs	Fcalc	SigF		ĸ		E-b-		
-	-	• •				-	-	-				-	-	-				-	-	-	F0D8	Fcalc	SigF
1	6		52	48	2	1		-3	1007	1024	2	1	10	0	145	145	3	3	12	7	67		
1	6	_	49 878	47 889	3 2	1	-	-2	365	354	2		10	1	170	166	3		12		354	55 347	4
ĩ	6		1123	1157	ź	1		-1 2	977 336	998 333	2 2		10	3	332	340	3		12		233	241	4
1	6		651	668	3	ĩ		3	831	848	2		10 10	4 5	513 344	506	3		12		64	63	5
1	6		636	653	3	1		5	534	535	3		10	6	530	340 530	3 3		12		192	178	4
1	6		364	362	3	1		6	73	69	3			7	350	346	3		13- 13		322 158	329	4
1		12	81 174	77 174	3 3	1	-	7	489	481	3			8	232	237	4		13		347	163 350	3 4
ī		13	127	124	3	1	-	9 11	422 102	424	3			9	170	168	3		13		269	276	4
1		14	174	179	4	i	-		130	97 125	3		10		47	37	5		13		319	333	4
1		15	262	256	5	1	-	13	314	314	4		10 10		153 132	151 126	3		13		174	180	3
1		-15	259	254	5	1	8	14	78	70	4		10		164	163	3		13 13		198 59	211	4
1		-14 -13	47 116	39 11B	6	1	-		88	88	3		11-		55	50	ŝ		13		227	52 235	4
ī		-12	140	153	3	1		11	245 126	249	. 4		11-		293	303	4		13		133	139	3
1	7	-11	222	226	4	i			511	120 504	3 3		11		58	67	5		13	0	646	656	ž
1		-9	705	696	3	ī	-	-8	306	304	3		11 11		588 228	600	3		13	1	339	344	3
1		-8	582	576	3	1	9	-7	498	491	ž		11		445	236 440	4 3		13	2	664	658	3
1		-7 -6	824	812	3	1	-	-	260	257	3		11		134	124	2		13 13	3 4	344 240	338 237	3
i		-5	375 614	373 616	3	1		-5	378	378	3		11		66	35	3		13	5	60	49	4
. 1		-4	311	308	3	1		-3 -2	47 138	40 129	3		11		130	143	3		13	7	91	90	3
1	7	-3	96	86	2	-		-1	457	471	3 3		11		365	356	3		13		224	· 241	4
1		-2	403	415	2	ī		ō	233	219	3		11 11	0 1	489 79	493 77	3 3		13	.9	267	256	4
1		-1	790	812	2	1	9	1	890	905	2		ii	2	737	723	3		13 13		422 155	406	4
1	777		49 1044	41 1091	3	1	9	2	327	333	3	1	11	3	232	236	3		14-		76	153 83	3
î	7		474	481	2 2	1	9 9	3	366	369	3		11	4	486	471	3		14		201	211	Å
1	7	3	1065	1101	2	1	9	5	263 78	271 77	3		11	5	171	178	3		14		66	66	4
1	7		223	243	3	ī	-	. 6	47	40	4		11 11	7 8	94 336	88 340	3		14		146	145	3
1	7		424	433	3	1		· 7	270	277	3			ğ	110	102	4		14 14		407 221	427	4
1	777		189 281	182 285	3	1	-	8	219	211	4		11		406	418	Ă		14		419	232 432	4
ĩ	7		279	283	3	1		.9	378 200	373	3		11		313	310	4		14		242	248	4
1	7		498	498	3	î	-		504	200 514	3 4		12-		284	301	4		14		198	197	4
1		10	152	144	3		9		97	89	3		12- 12		214 63	227 61	4		14	Q	150	154	3
1		11	491	482	4		9		188	195	4		12		143	143	3		14 14	1 2	197 115	200	3
1		12 13	61 271	68 274	5		10-		230	242	5	1	12	-6	194	196	3		14	ŝ	115	108 139	3 3
i		14	142	144	43		10- 10-		189	199	4		12		80	81	3		14	4	279	274	4
ī		-13	434	446	4		10-		238 402	243 414	4		12		526	532	3		14	5	466	459	4
1		-12	129	133	ŝ		10		215	218	4 4		12 12		38 619	34	5		14	6	284	288	· 4
1		-11	464	470	4		10		125	124	2		12		110	631 112	3 2		14	7	398	380	4
1		-9 -8	226	221	4		10		463	469	3			ō	298	309	3		14 14	8 9	195	185	4
1		-7	109 88	104	3		10		312	306	З			2	254	254	4		15		120 243	118 236	3
ī		-6	179	86 176	3 3		10		612	606	3			3	107	110	3		15		181	187	4
î		-5	445	444	3		10 10		455 268	454 260	3			4	589	584	3	1	15	-7	338	340	4
1	8	-4	87	68	ž		10		382	384	3		12 12	5 6	141	138	3		15		108	110	3
										207	2	*	16	U	465	462	3	1	15	-5	300	313	4

.

.

i

:

HKL	Fobs	Fcalc	SigF	н -	КІ	Fobs	Fcalc	SigF	н	к	L	Fobs	Fcalc	SigF	н	к	L	Fobs	Fcalc	SigF
1 15 -4	139	132	2	2	0 -	1500	1400		-	-	-				-	-	-			
1 15 -2	117	126	2	2	0 2		1402 909	6 2	2	2 2	-1	.231	224	2	. 2		-9	513	490	З
1 15 -1	260	269	4	2	0 6		415	2	2	2	0 1	448	418	2	2	-	-	87	68	3
1 15 0	48	57	5	2	ŏi		153	ŝ	ź	ź	ż	377 684	359	2	2		-7	528	507	3
1 15 1	355	366	3	2	0 10		539	3	2	ž	ŝ	962	668 965	2	2 2		-6	106	89	2 2
1 15 2	75	83	3	2	0 12			3	2	ž	4	950	969	2	2	-	-5 -3	860	888	2
1 15 3	425	425	4	2	0 14	135	149	3	ĩ	ž	ŝ	725	726	ź	2	-	-2	632 115	666	2
1 15 4	167	169	3	2	1-16	80	78	5	2	2	6	413	399	ž	2		-1	435	107 456	2
1 15 5	129	129	3	2	1-14			4	2	2	7	200	192	3	2	4	ō	76	75	2
1 15 7 1 15 8	178	182	3	2	1-13		75	4	2	2	8	214	219	3	2	4	ĭ	1039	1068	6
1 15 8	115 273	109 264	3	2	1-12		501	4	2	2	9	260	250	3	2	4	2	91	78	2
1 16 -8	42	264	5 6	2 2	1-11		182	4	2		10	287	279	3	2	4	3	982	1006	2 2
1 16 -7	73	72	4	2	1-10		374	3	2		11	293	293	4	2	4	4	138	138	3
1 16 -5	230	239	4	2	1 -8		503 350	3	2		12	275	277	4	2	4	5	625	635	2
1 16 -4	65	67	4	ž	1 -1			3 2	. 2		13 14	307	317	4	2	4	6	65	60	2 3
1 16 -3	419	446	4	2	1 -é			ź	2		14	208	216	4	2	4	7	192	195	3
1 16 -2	124	129	3	2	1 -9			2	2		-13	155 362	162 374	3	2	4	9	276	273	3
1 16 -1	329	341	4	2	<u>1</u> -4			ź	ź		-11	556	565	4 4	2 2		10	108	106	3
1 16 0	89	93	3	2	1 -3		197	2	2		-10	344	338	4	2		11 12	673 171	661	3
1 16 2	53	_53	4	2	1 -2			6	ź		-9	529	501	3	ź		13	440	170 448	3 4
1 16 3 1 16 4	201 62	200	4	2	1 -1			2	2	3	-8	261	265	3	ž		15	95	98	3
1 16 5	298	65 287	4	2	1 (2	2		-7	228	220	3	2		-14	77	82	4
1 16 7	308	293	4 4	2 2	1 1 1			2	2		-6	146	163	3	2	5-	-13	307	322	4
1 17 -6	135	131	3	2	1 3		101 88	2	2			453	449	2	2		-12	116	110	3
1 17 -5	187	195	4	2	1 4			2	2		-4	166	176	3	2		-11	552	544	4
1 17 -3	- 99	- 99	3	ž	î :		617	2 2	2 2	3	-3 -2	920	961	2	2		-10	191	179	4
1 17 -2	58	53	4	2	īĕ		670	2	ź	3	-1	56 1224	62 1253	2 6	2		-9	342	326	4
1 17 -1	240	246	4	2	ī		437	ž	2	3	0	172	1253	2	2 2		~8	327	312	3
1 17 0	133	134	3	2	1.8			ž	ž	3	ĭ	594	581	ź	2	-	-7 -6	243	223	3
1 17 1	345	348	. 4	2	1 10	471	476	3	2	3	ź	240	253	2	2	_	-5	144 140	140 131	3 2
1 17 2	248	260	4	2	1 11		43	4	2	3	3	162	158	2	2		-4	560	559	2
1 17 3	113	113	2	2	1 12			3	2	3	4	129	129	ž	ž	-	-3	1162	1203	2
1 17 4 1 17 5	115	120	3	2	1 14			4	2	3	5	873	873	2	2		-2	490	479	2
1 18 -3	47 183	40 183	5	2	1 19			3	2	3	6	612	616	2	2		-1	1269	1298	7
1 18 - 3 1 18 - 2	143	148	3 3	2 2	2-16			4	2	3.		783	777	3	2	5	Ō	280	295	2
1 18 -1	210	206	4	2	2-19			4	2	3	8	273	272	3	2	5	1	457	459	2
1 18 Ö	113	119	· 3	ź	2-13			3	2	3	9 10	496	489	3	2	5	2	343	371	2
1 18 3	104	109	3	2	2-12			3	2		10	126	123	2	2	5	3	369	388	2
2 0-16	305	311	5	2	2-11			3	2		13	213 225	208 221	4	2	5	4	145	130	2
2 0-14	497	499	4	2	2-10			4	ź		14	225 51	70	4	2 2	5 5	5	669	676	2
2 0-12	1 02	95	3	2	2 -9		266	4	ž		15	313	334	4	2	5	6 7	502 646	533	· 3
2 0-10	364	373	3	2	2 -8		591	3	ž		15	354	362	5	2	5	8	231	655 224	3
20-8	577	556	3	2	2 -			3	2		14	108	103	4	2	5	9	549	224 552	3 3
20-6	1230	1211	2	2	2 -6			3	2		13	368	381	4	ž	-	10	138	131	2
20-4 20-2	1206 67	1187 68	7	2	2 -			2	2	-	12	53	64	6	2		ĩĩ	124	122	3
20^{-2}	1357	1240	25	2	2 -4			2	2		·11	191	187	3	2		12	103	101	ž
		1240	2	2	4	185	161	2	2	4-	·10	102	104	3	2	5	13	199	192	4

.

145

.

•

•

.

÷

н	1	КГ	Fobs	Fcalc	SigF	н	КІ	Fobs	Fcalc	SigF	н	ĸ	L	Fobs	Fcalc	SigF	н	ĸ	L	Fobr	Fcalc	C(-T
-	•					-					-	-	-				-	-	-			51gr
2		5 15	255	260	5	2	78	475	486	3	2	9	10	304	316	4	-	17	~			
2		6-15	199	202	4	2	7 9			3	2		ĩĩ	42	26	6		12 12		286 53	296	45
2		6-14 6-13	211 144	208	4	2	7 10			4	2	9	12	54	47	5		12		405	50 413	5
ĩ		6-12	162	150 152	3 4	2 2	7 12			5	2	-		67	59	4		12		78	82	4
2		6-11	50	55	6	ž	7 14			3 3		10-		101	106	3			-5	569	564	3
2		6-9	396	383	4	2	8-14			4		10- 10-		157 98	166	3		12		187	180	3
2		6 -8	565	544	3	2	8-13			3		10-		96	104 96	3 3			-3 -1	359	355	4
2		6 -7	650	641	3	2	8-12		160	3		10		246	240	4		12	-1	304 194	300	3
2		6-6 6-5	811 611	795	3	2	8-10			4		10		250	253	4		12	ĩ	713	195 716	3
2		6 -4	358	602 354	3 3	2 2	8 -9			4		10		550	562	3		12	2	188	196	3
ž		6 - 3	155	151	2	2	8 -8 8 -7			4		10		182	177	· 3		12	3	567	564	3
2		6 - 2	53	55	3	ž	8 -6			3		10		288	276	4		12	4	42	33	5
2		6 -1	247	247	2	2	8 -5			3		10 10		106	105	3		12		360	360	3
2		60	406	416	2	2	8 -4			3.		10		52 57	47 51	4 4	2	12	5	82	77	3
2		61	621	624	2	2	8 -3	174		3		10	ĩ	245	242	3		12 12		154	154	3
2 2		62 63	588	633	2	2	8 -2			3		ĩõ	2	311	306	3		12		188 339	181 339	3 ·
ź		64	771 959	815 1011	2 2	2	8 -1			4		10	3	577	577	3			10	58	64	4 5
2		65	462	499	2	2 2	8 (3		10	4	313	315	3		12		424	422	4
ž		66	308	303	3	2	8 1			2		10	5	417	421	.3		13		289	286	5
2	•	67	132	127	2	2	8 4			2 3		10	6	169	170	3		13		209	214	4
2		68	412	422	3	ž	8 5			3		10 10	8	107 282	106	3		13		155	163	4
2		69	332	333	3	2	8 6			3		10		282 301	289 302	4	2	13	-8	63	59	4
2		6 10	348	364	4	2	87	172	167	3		ĩõ		262	262	4		13	-6	121	128	3
2 2		6 11	332	328		2	8 9			4		10		198	207	4			-5	62 83	76 80	4
ź		612 613	308 220	308	4	2	8 10		=	3		10		261	248	5	2	13	-4	193	189	3
2		6 14	224	221 218	4	2	8 12			4		11-		319	336	4			-3	644	650	3
-2		6 15	123	113	4 3	2 2	8 14 9-13			4		11-		195	198	4	2	13	-2	184	177	4
2		7-14	159	162	4	ž	9-12			4 4		11 11		402	415	4	2	13	-1	721	713	3
2		7-12	284	286	4	2	9-11			4		11		233 79	236	4		13	0	230	221	4
2		7-11	50	46	5	2	9-10			4		ii		366	66 360	3 4	2	13 13	1 2	220 169	217	4
2 2		7-10 7 -9	471 297	468	4	2	9 -9			4		īī		200	198	4		13	ŝ	185	161 180	3 3
ź		7-8	434	305 414	4	2 2	9 - 8			3		11		614	592	3	2	13	4	100	100	3
2		7 -5	390	372	3	2	9-6			5		11		160	159	3	2	13	5	241	236	4
2		7 -4	637	642	3	2	9 -4			3 3		11		630	624	3		13	6	235	229	4
2		7 - 3	197	178	3	ž	9 -3			3		11 11	0 1	167	160	3		13	7	355	354	4
2		7 -2	1077	1100	2	2	9 -2			3		11	2	420 129	417 128	3		13	8	300	294	4
2		7 -1	43	32	3	2	9 -]			3		11	3	45	38	2 5		13	9	352	347	4
2 2		70 71	818	851	2	2	9 (691	3		îî	4	180	180	3		13 14		97 202	102 196	3
2		71 72	260	277	2	2	9 1			3		īī	5	331	322	3		14		288	294	4 4
2		73	124 42	128 44	2 3	2	94			3	2	11	6	312	310	3		14		244	248	4
2		74	349	363	3	2 2	95			3		11	7	560	568	3		14		387	396	4
2	-	7 5	160	163	3	2	9 7			3		11	9	406	421	4		14		257	276	4
2		76	532	553	3	ž	9 6			3		11 11		162	160	3		14		260	258	4
2		77	326	335	3	2				3		12-		95 112	86 110	3		14		88	94	3
										-	6		10	114	110	د	2	14	-T	158	157	З

•

146

.

.

1

·

<u>ц</u>	v	r	Faba							·													
п -	ĸ	ц. -	robs	Fcalc	Sigr	н	K	Ľ	Fobs	Fcalc	SigF	н	к	L	Fobs	Fcalc	SiqF	н	. K	L	Fobs	Fcalc	SigE
						-	-	-				-	-	-				-	_	-			
2	14	0	175	178	4	3	0	-1	1555	1410	-	-	-	_									
	14	ī	282	287	4	3	ŏ	1	964	1419 983	7 2	3		-2	251	255	2	3	4	-6	450	436	3
	14	2	436	436	4	3	ŏ	3	357			3		-1	481	475	2	3	4	-4	167	152	3
	14	3	349	347	4	3	ŏ	5	229	326 210	2	3	2	0	694	697	2	3	4	-3	111	111	2
	14	4	413	408	4	3	ŏ	7	431		3	3	2	1	676	644	2	3	- 4	-2	1139	1181	2
2	14	5	264	252	4	3	ŏ	9	739	416 742	3 3	3	2	2	805	777	2	3	4	-1	149	148	3
	14	6	97	85	3	3		11	526	534	3	3	2	3	459	442	2	3	4	0	934	980	2
	14	8	188	179	3	3		13	111	114	-	3	2	4	63	52	2	3	- 4	1	52	36	2
	14	9	164	149	3	3		15	190		3	3	2	5	105	109	2	3	4	2	265	249	2 2 2
	15	-8	196	199	4	3		-15	270	202 289	4 5	3	2	6	520	523	3	3	4	3	74	77	2
	15		83	82	3	3		-14	87	289 91	4	E	2	7	474	464	3	3	4	4	161	167	3
	15		182	182	4	3.		-13	359		-	3	2	8	460	444	3	3	4	5	81	76	2
	ĩš		251	259	4	3		-11	142	372	4	3		,9	402	398	3	3	4	6	225	217	3
	15		106	104	3	3		-10	215	134 230	3	3		10	339	342	4	3	4	7	78	63	3
	15		342	337	4	3		-9	133	138	4	3		11	238	236	4	3	4	8	615	618	3
	ĩš	õ	338	337	4	3		-8	96	138	3	. 3		12	74	81	4	з	4		612	611	3
	15	ĩ	125	123	3	3	_	-7	480		3	3		13	58	53	5	3	4		144	143	2
	15	2	159	156	3	3	_	-6	480 546	481	3	3		14	60	64	4	3		12	157	156	3
	15	3	96	98	3	3		-5	757	557	3	3		15	148	146	3	3		14	164	157	3
	15	4	195	184	4	3		-3	860	762 851	3 2	3		14	351	351	. 5	3		-14	342	339	5
	15	5	110	110	3	3		-2	130	117	2	3		13	56	61	6	3		-13	193	200	4
	15	ē	422	404	4	3		-1	145	148	23	3		12	271	267	4	3		-12	351	348	4
2	15	7	81	80	4	3	î	ō	461	435	2	3		11	229	213	4	3		-11	107	106	4
2	15	8	319	299	4	3	ī	ĩ	989	937	2	3		10 ~9	118	126	3	3		-9	138	140	3
2	16	-6	242	254	4	ž	î	Ż	298	277	2	3		~8	58	60	5	3	5		277	266	4
2	16	-5	134	136	3	3	ī	3	1172	1098	. 7	3		~7	200	181	5	3		-7	546	550	3
2	16	-4	226	233	4	3	ī	4	647	651	2	3		-6	348	334	3	3		-6	426	414	3
2	16	-3.	161	161	3	ž	î	ŝ	726	729	ź	3		~5	663	648	3	3	5		352	352	3
2	16	-2	77	78	4	3	ī	6	210	202	3	3	_	-3	316.	298	3	3	5		964	975	3
2	16	-1	84	81	4	3	ī	7	247	246	3	3		-3	662	675	3	3	5		181	158	3
	16	0	213	215	4	ž	ĩ	8	B2	82	3	3		-2	106	97	2	3	5	-2	619	624	2
	16	1	179	165	3	3	ī	· 9	51	43	5	3	_	-1	556 76	557	2	3	5		276	282	3
	16	2	323	316	4	3		10	102	93	3	3	3	0	50	60 51	2	3	5	0	375	389	2
	16	4	231	222	4	3		īī	463	463	3	3	3	1	50 94	51 81	2	3	5	1	106	117	2 2
	16	5	48	39	5	3		12	97	104	3	3	3	2	505	506	2	3	5	2	598	610	2
	16	6	121	114	3	3		13	422	438	4	3	3	ž	385		4	3	5	3	484	496	2
	17		125	128	3	3		14	94	95	3	3	3	4	736	386 748	2	3	5	4	605	617	2
	17		146	152	3	3		15	223	229	4	3	3	ŝ	350	350	2	3	5	5	493	514	3
	17		282	275	4	3		-15	49	48	7	3	3	6	562		2	3	5	6	522	537	3
	17		119	113	3	3		-13	116	106	ś	3	3	8	209	561 195	3	3	5	7	124	122	2
	17	0	244	231	5	3		-12	150	151	3	3	3	ğ	209	227	3	3	5		155	151	3
	17	1	110	100	3	3		-11	335	332	4	3		10	219	222	4	_	5		222	223	4
2	17	-	125	112	3	3		-10	347	363	4	3		12	407	406	4	3		11	126	120	3
3		15	111	112	4	3	2	-9	516	517	3	3	ž		101	105	2	3		12	343	336	4
3		13	287	290	4	3	2	-8	807	809	3	3		14	247	252	5	3		13	156	151	3
3		-11	519	537	4	3	2	-7	263	252	3	3		12	384	385	4	3		14 -12	273	264	4
3		-9	398	421	3	3		-6	133	137	3	3		10	618	613	*	3			160	154	3
3		-7	324	332	3	3	2	-5	267	284	3	3		-9	55	60	- -	3		-11	228	220	4
3		-5	117	122	2	З	2	-4	527	519	ž	3	-	-8	549	534	2	3		-10	465	453	4
3	0	-3	542	541	2	3	2	-3	401	402	2	ž	4	_	39	36	6	3		-9 -8	536 400	516	4
												2	-	•			J	د	0	-0	400	396	. 4

.

.

÷

.

:

.

1

:

.

H K L Fobs Fcalc SigF H K L Fobs Fcalc SigF <th< th=""><th> 9 3 L 4 L 3 7 4 5 6</th></th<>	 9 3 L 4 L 3 7 4 5 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L 4 L 3 7 4 5 6
3 6 -6 164 160 3 3 8 -7 342 332 4 3 10 -4 261 255 4 3 12 6 172 16 3 6 -5 283 290 3 3 8 -6 90 88 3 10 -3 364 372 3 3 12 8 388 39 3 6 -4 209 194 3 3 8 -5 142 143 2 3 10 -3 364 372 3 3 12 9 115 11 3 6 -3 410 405 3 3 8 -6 142 143 2 3 10 -2 216 209 3 3 12 10 345 33 3 6 -2 490 506 3 3 8 -3 76 587 3 3 10 -1 322 332 3	L 4 L 3 7 4 5 6
3 6 -5 283 290 3 3 8 -6 90 88 3 3 10 -3 364 372 3 3 12 8 388 39 3 6 -4 209 194 3 3 8 -5 142 143 2 3 10 -3 364 372 3 3 12 9 115 11 3 6 -3 410 405 3 3 8 -6 64 3 3 10 -2 216 209 3 3 12 10 345 33 3 6 -2 490 506 3 3 8 -4 68 64 3 3 10 -1 322 332 3 3 13 10 455 33 3 13 10 -1 322 332 3 3 13 -10 66 55 3 6 -2 490 506 3	L 3 7 4 5 6
3 6 -3 410 405 3 3 8 -5 142 143 2 3 10 -2 216 209 3 3 12 10 345 33 3 6 -2 490 506 3 3 8 -4 68 64 3 3 10 -1 322 332 3 3 13-10 66 5	7 <u>4</u> 5 6
3 6 -2 490 506 3 3 8 -4 68 64 3 3 10 -1 322 332 3 3 13-10 66 5	56
36-1525535238-2326356557535237655765757777777777777777	
3 6 0 562 573 2 3 8 1 820 846 3 3 10 1 176 170 3. 3 13 -B 227 21	
3 6 1 563 587 Z 3 8 0 70 73 3 3 10 3 55 521 3 3 13 -7 185 18	
3 6 2 490 511 2 3 8 1 469 476 3 3 10 5 138 135 3 13 6 300 29	
3 6 3 191 198 3 3 8 2 178 179 3 3 10 6 355 364 3 3 13 4 584 50	
3 6 5 33 241 2 3 8 3 53 47 4 3 10 7 348 354 3 3 13 -3 200 19	
3 6 6 257 259 3 3 6 4 59 63 3 3 10 8 391 404 4 3 13 -2 393 38	
3 6 7 447 455 3 3 8 6 106 100 3 3 10 9 280 286 4 3 13 -1 50 4	
3 6 8 371 382 3 3 8 7 419 479 3 3 10 10 225 232 4 3 13 0 192 19	94
3 6 9 300 301 3 3 8 8 56 56 4 3 10 11 113 114 3 3 13 1 128 12	
3 6 10 225 236 4 3 8 9 566 586 3 3 11-11 110 127 3 3 13 2 425 42	
3 6 11 241 247 4 3 8 11 327 331 4 3 11 -8 245 232 4 3 13 3 219 22	
3 6 12 163 169 3 3 8 12 67 67 4 3 11 -7 144 140 3 3 13 5 235 36	
3 7 14 15 138 3 3 9 -13 250 233 4 3 11 -6 508 494 4 3 13 6 319 31	
3 7-13 312 303 5 3 9-12 126 129 3 3 11 -5 96 87 3 3 13 7 103 10	
3 7-12 106 103 4 3 9 9 100 124 4 3 11 -4 513 505 4 3 13 8 123 11	
3 7-11 138 140 3 3 9-8 140 131 3 3 11-2 307 306 4 3 13 9 66 6	
3 7-10 77 79 4 3 9-7 151 144 3 3 11 0 74 74 4 3 14-8 161 15	-
3 7 - 9 157 152 3 3 9 - 6 275 278 4 3 11 1 (5 73 3 3 14 - 7 188 18)	
3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	
37-6 325 321 $39-4$ $1/1$ 171 3 311 3 149 146 3 $314-4$ 55 5	
3 7 -5 717 710 3 3 9 -3 540 556 3 3 11 4 564 573 3 3 14 -3 269 26	
3 7 -4 121 131 3 3 9 2 97 100 3 3 11 5 205 213 4 3 14 -2 267 27	
3 7 -3 587 588 3 3 9 0 96 103 3 311 6 437 433 3 3 14 -1 277 28	
3 7 - 2 88 81 2 3 9 1 249 252 4 3 11 7 44 41 5 3 14 0 276 27	4
3 7 -1 197 209 3 3 9 2 71 65 3 3 11 9 130 139 2 3 14 1 340 33	
3 7 0 2/5 283 3 3 9 3 437 449 3 3 11 10 155 157 3 3 14 2 153 14	
3 7 2 302 205 3 9 4 333 335 3 3 12-10 381 356 5 3 14 5 147 14	
3 7 3 795 874 3 3 9 5 495 505 3 3 12 -9 62 57 5 3 14 6 115 11	
3 7 4 508 533 3 3 9 7 241 242 3 3 12 -8 285 281 5 3 14 7 363 36	
3 7 5 679 701 3 3 9 9 100 102 3 3 12 -7 67 65 5 3 14 8 176 16	
<u>3 7 6 188 204 3 3 9 10 69 70 4 3 12 -6 269 260 4 3 15 -7 287 26</u>	
3 7 7 277 284 3 3 9 11 327 330 4 3 12 -4 112 103 3 3 15 -6 163 15	
3 / 8 102 92 2 3 9 12 120 114 3 3 12 -2 617 510 3 3 15 -5 3/4 36	
3 7 9 116 121 2 3 10-12 90 98 4 3 12 -1 139 134 3 3 15 -3 192 19	
3 7 11 307 301 3 3 10-11 186 179 3 3 12 0 626 626 3 3 15 -2 73 7	
3 8-13 140 139 3 10 -9 315 300 4 3 12 2 230 237 4 3 15 1 159 15	
3 8-11 344 332 4 3 10 -7 202 193 4 3 12 3 108 110 3 3 15 3 322 30	5 4
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 4

.

N F

.

ŧ

÷

HKL	Fobs	Fcalc	SigF	H -	K L	Fobs	Fcalc	SigF	н	ĸ	L	Fobs	Fcalc	SigF	н	ĸ	L	Fobs	Fcalc	SigF
3 15 5 3 15 6	324 118	316	4	4	2-14	152	161	. 3	4		11	400	406		-	-	- 12			
3 15 7	143	117 133	3 3	4	2-13	198	220	5	4		12	145	142	3	4		13	104	99	3 3
3 16 -4	80	75	4	4	2-12 2-11	289 253	306 271	4	4		13	79	73	4	4	6-	13	180	176	3 3
3 16 -3	220	211	4	4	2-10	277	287	4	4		·13 ·11	352 285	361	5	4		12	305	300	5
3 16 -2	151	149	3	4	2 -9	222	233	4	4		-9	122	296 120	5 3	4		11	283	289	5
3 16 -1	331	325	4	4	2 -8	124	120	3	4	-	-8	47	56	6	4		-10 -9	247	252	5
3160 3161	112	108	3	4	2 -7	120	116	3	4	4	-7	68	62	4	4		-8	176 177	181 175	4
3 16 3	295 91	279 92	4 3	4	2 -6 2 -5	567	558	3	4	-	-6	56	49	4	4	-	-7	168	159	4 3
3 16 5	83	81	4	4	2 - 3	387 590	390 592	3	4	-	-5	378	369	3	4	6	-6	538	542	ž
3 17 0	67	66	5	4	2 - 3	409	393	3	4		-4	83	65	3	4		-5	464	476	3
4 0-14	322	354	5	4	2 -2	459	441	3	4 4		-3 -2	871 92	881 94	3	4		-4	399	416	. 3
4 0-12	336	366	4	4	2 -1	446	427	2	4		-1	472	486	3	4		-3 -2	403	420	3
4 0-10 4 0 -6	273	296	4	4	20	235	237	3	. 4	4	ō	48	43	3	4		-1	308 271	317 279	3 3
4 0 -4	609 1161	613 1156	3	4	2 1	129	124	2	4	4	1	317	308	ĩ	4	6	ō	246	266	3
4 0 -2	1214	1136	3	4	22 23	180	161	3	4	4	2	66	53	3	4	6	ì	107	97	2
4 0 2	594	597	2	4	23	438 528	409 515	2 2	4	4	3	228	214	3	4	6	2	169	168	3
404	641	619	2	4	2 5	488	507	3	4	4	4	65 330	65	3	4	6	3	385	382	· 3
4 0 6	678	673	3	4	26	439	445	3	4	4	6	177	328 175	3	4	6	4	688	699	3
408 4010	466	458	3	4	27	170	163	3	4	4	7	530	545	3	4	6 6	5 6	430 564	447 596	3
4 0 12	45 290	23 284	6 4	4	28	231	232	4	4	4	в	95	86	3	4	õ	7	188	200	4
4 1-14	67	72	5	4 4	29 210	109 68	102 63	3	4	4	9	261	263	4	4	6	8	199	206	4
4 1-13	81	80	4	4	2 11	71	68	4	4		10 11	54	57	5	4		12	148	143	3
4 1-12	177	179	Ē	4	2 12	97	95	3	4		12	164 80	165 80	3	4		12	94	96	4
4 1-10 4 1 -9	332	353	4	4	2 13	175	175	3	4		13	298	291	3 5	4 4		-10 -9	360 174	357	4
4 1 -9 4 1 -8	226 465	238	4	4	3-13	52	41	6	4		-11	223	224	4	4		-8	539	161 537	3 4
4 1 -7	336	488 340	3	4	3-12 3-11	52 245	14	6	4		-10	226	222	4	4	-	-7	216	213	4
4 1 -6	335	338	3	4	3-10	245	250 225	5	4		-9	405	398	4	4		-6	453	450	4
4 1 -5	43	35	5	4	3 -9	409	426	4	4		-B -7	442 372	431	4	4		-5	50	49	5
4 1 -4	91	83	3	4	3 - 8	204	211	4	4		-6	96	368 91	4 3	4 4		-3 -2	155	153	3
4 1 - 3 4 1 - 2	80	70	3	4	3 -7	454	455	3	4		~Š	328	336	3	4		-1	406 191	424 202	3 3
4 1 -1	445 91	429 91	3 2	4	3 -5	321	322	3	4		-4	115	110	2	4	7	ō	601	630	3
4 1 0	896	892	ź	4	3-4 3-3	195 35	197	3	4		-3	56	41	4	4	7	1	264	268	ž
4 1 1	422	422	2	4	3-1	638	20 631	5	4		-2	49	47	4	4	7	2	635	659	3
4 1 2	770	734	2	4	3 0	48	37	23	4 4	5 5	-1 0	602 229	610 233	3	4	7	3	454	473	3
4 1 3	401	393	2	4	31	661	647	2	4	5	ĭ	567	575	3	4 4	7 7	4 5	328	337	3
4 1 4 4 1 5	493	472	2	4	32	488	477	2	4	5	2	384	374	3	4	7	5	69 92	77 89	3 3
4 1 6	175 110	175 110	3 2	4	3 3	402	387	2	4		· 3	350	336	3	4	7	7	218	233	3
4 1 7	247	253	2	4	34 35	233	221	3	4	5	4	300	305	3	4	7	8	313	322	3
4 1 8	565	557	3	4	36	113 177	112 185	2 3	4	5 5	5 7	189	191	3	4	7	9	83	82	3
4 1 9	119	114	3	4	3 7	237	245	3	4	5	8	235 112	239 106	3	4		10	381	381	4
4 1 10	612	607	3	4	38	268	267	3	4	5	9	480	499	23	4 4	7	11 12	61	67	4
4 1 11 4 1 12	113 279	114 282	3	4	39	507	508	3	4	5	10	143	140	3	4		12	269 289	269 275	4. 5
	273	202	4	4	3 10	171	172	З	4	5	11	323	328	4	4		10	115	114	4

.

.

i

1

:

-

нкг	Fobs	Fcalc	SigF	Н	к	Ţ.	Fobs	Fcalc	SigF		к										
				-	-	-				-	-	-	FODS	Fcalc	SigF	н	ĸ	L	Fobs	Fcalc	SigF
4 8 - 7	49	34	~			~															
4 8 - 6	243	247	6 4		10 10	2 3	179	178	3			7	75	79	4	5	1	5	389	393	3
4 8 - 5	170	176	3		10	4	332 277	346	3		14		263	245	5	5	1	6	252	260	3
4 8 - 4	711	733	3		10	5	481	286 496	4		14		174	167	3	5	1	7	552	556	3
4 8 - 3	91	81	3		10	6	268	266	3 4		14		289	283	5	5	1		40	20	6
48-2	589	607	3		10	ž	212	200	3		14		234	238	5	5		9	439	430	4
48-1	83	77	3		10		145	158	2		14 14		200 169	196	3	5		10	57	55	5
480	78	82	3		11-		147	143	3		14	0	158	166 154	4 3	5 5		11	. 98	89	3
4 8 1	178	177	3		11		336	323	5		14	ĭ	57	63	4	5		12	145	148	3
4 8 2 4 8 3	351	364	3		11		200	188	4		14	ź	91	94	3	5		-10 -9	145 273	152	3
483 484	78 541	81	3		11		433	426	4	4	14	3	146	145	ž	5		-8	383	287 407	4
4 8 5	61	558 50	3		11		233	227	4	4	14	4	306	293	4	5		-7	339	345	4
4 8 6	529	552	3		11		81	82	_		14	5	238	238	4	5		-6	295	312	4
4 8 7	100	104	3		11 11		183	183	4		14	6	264	249	5	5		-5	286	291	4
4 8 8	344	362	4			0	238 99	229	4		15		171	168	3	5	2	-4	150	143	3
4 8 11	71	70	4			ĩ	465	100 468	3		15		46	20	6	5	2	-3	280	257	3
4 8 1 2	270	265	5		ii	ź	181	177	3		15	0	315	311	4	5		-2	60	53	4
4 9-10	296	290	5		ii	ŝ	430	443	3		15 15	1 2	90	.83	3	5	2	0	251	255	3
49-9	236	231	4			6	93	91	3		15	ŝ	368 132	357 126	4	5	2	1	388	407	3
4 9 - 8	313	309	4		11	7	168	166	3		15		132	126	3 3	5	2	2	484	488	3
4 9 - 7	266	267	4		11	8	87	90	3	5	-0 ⁻		173	170	3	5 5	2 2	3 4	593	581	3
49-6 49-5	415	414	4		11		239	238	4	5		-9	172	191	3	5	ź	5	442 302	435 301	3 3
4 9 - 4	80 139	93 139	. 4		12		55	58	6	5	0	-7	504	524	4	5	2	6	155	164	3
4 9 - 2	407	433	3 3		12		87	84	4	5		-5	780	783	3	5	ž	7	52	43	4
4 9 -1	168	169	3		12		395	401	4	5		-3	361	341	3	5	2	8	230	233	4
4 9 0	561	589	3		12 12		170 489	161	3	5		-1	488	479	3	5	2	9	184	171	3
4 9 1	304	312	3		12		123	497 123	4	5		1	568	619	3	5	2	10	163	152	3
492	406	414	3		12		217	218	3 4	5		3	518	535	3	5		11	205	198	4
493	227	229	3		12		69	65	4	5 5	0	5 7	478	477	3	5		12	217	201	4
494	195	192	4			3	308	311	4	5		9	79 309	74	3	5		-12	246	253	4
4 9 5	43	45	5		12	5	371	380	4	5		11	359	299 342	4	5		-11	212	224	4
4 9 7	150	148	3	4	12	6	81	72	3	5		12	115	127	4 3	5		-10	276	302	5
4 9 8	289	297	4			7	338	333	4	5	- i-		318	353	4	5		-9 -8	156	161	3
499 4910	100 377	107 393	3	4	12	8	98	97	3	5		10	217	235	4	5		-7	141 154	136 150	3
4 9 11	101	393 95	4 3		13		175	160	3	5	1	-9	289	308	4	5		-6	117	119	3 3
4 10-11	235	213	5		13 13		260	251	5	5	1		50	53	6	5		-5	154	157	3
4 10-10	91	82	4		13		120 239	117 227	3	5	1		62	55	5	5	3	-4	321	323	3
4 10 -9	136	130	3		13		51	58	5 6	5 5	1		145	144	3	5		-2	494	476	3
4 10 -7	141	132	3		13		114	115	3	5	1		474	457	3	5		-1	164	153	3
4 10 -6	122	116	3		13		349	358	4	5	1 1		144 869	146	3	5	3	0	287	277	З
4 10 -5	346	342	4			Ō	203	202	4	5		-3 -2	125	823 113	3 3	5 5	3 3	1	243	237	3
4 10 -4	269	264	4		13	1	305	305	4	5	î		569	563	3	5	3	2 3	78	70	З
4 10 -3	192	186	3		13	2	231	228	4	5		ō	170	164	3	5	3	4	83 228	84	2
4 10 -2	241	248	4		13	3	185	191	4	5	1	ĩ	53	54	3	5	3	5	228	228 247	3 3
4 10 -1 4 10 0	225 90	232	4		13	4	84	86	4	5	1	2	139	138	3	5	3	6	455	469	3
4 10 1	235	92 237	3		13	5	167	160	3	5	1	3	123	117	3	5	3	7	165	165	3
1	6.3	251	3	4	13	6	61	51	4	5	1	4	265	269	3	ŝ		8	374	379	3
																2	-	-	- · ·	5.5	

,

,

÷

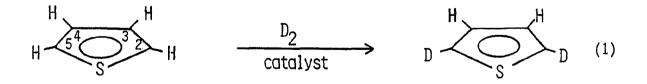
н	ĸ	L	- Foha	Faile	64-E					<u> </u>				<u> </u>	<u> </u>								
-	-	-		Fcalc	51gr	н -	K I	- FC	bs	Fcalc	SigF	H	I K	L	Fobs	Fcalc	SigF	н	K	L	Fobs	Fcalc	SiaF
												-	• -	-				~	-	-			
5	3		125	130	3	5	6 -!		24	229	4	5	9	-6	59	53	5	5	12	0			
5 5		10 11	164	168	3	5	6 ~4		60	166	3	5		-5	218	225	4	5	12	1	333 41	339 32	4
5		12	106 95	102 89	3	5 5	6 - 3 6 - 3		20	119	3	5	-	-4	82	84	4	5	12	ž	329	332	4
5		-10	132	142	3	5	6 -1		51 36	151 249	3	5		-3.	407	419	4	5	12	4	222	225	4
5	4	-9	44	43	7	5	6 1	-	00	404	3	5		-2 -1	123	124	3		12	5	70	67	4
5		-8	296	307	4	5			78	482	3	5		0	382 215	400 229	4		12	6	160	152	3
5		-	421	429	4	5	6 3	3 5	24	526	3	5		ĭ	207	217	4 4	5	13 13	-4	303	285	5
5	4	-	56	45	4	5	6 4		50	244	3	5		2	99	98	3	5	13	-3	146 395	135	3
5	4 4	-	384 52	392	3	5			69	285	3	5		3	51	66	5		13		187	399 180	4
5	4	_	54	41 46	4 4	5 5	68		46	157	3	5		4	166	171	3		13	ô	201	194	3
š	4		181	176	3	5	6 9		.46 .80	147	3	5		5	167	179	3	5	13	1	120	123	3
5	4	0	554	551	3	5	6 11		49	184 251	3 5	5		6	171	177	4		13	2	79	77	4
5	4	2	495	487	3	5	7-11		55	341	5	5		7 8	330	341	. 4		13	3	113	111	3
5	4	З	62	63	3	5	7-10		74	164	4	. 5		9	47 268	52 266	5 4		13	4	115	113	3
. 5	4	4	370	365	3	5	7 -9		79	276	5			-9	185	176	4	5	14 0-	0	191	197	4
5 5	4	5	.98	101	2	5	7 -6		76	179	4		10		316	304	5	6		-8	291 293	331	5
5	4	6 7	183 79	187	4	5	7 -5		81	293	4	5	10	-7	264	261	4	6		-6	167	315 174	4
5	4	é	243	83 244	3 4	5	7 -4		41	249	4		10		277	273	5	ĕ		-4	330	318	4
5		10	430	438	4	5 5	7 - 2		60 61	576	3		10		169	167	3	6		-2	582	570	3
5	4	11	74	84	4	5	7 -1		53	53 579	4 3		10		46	4B	6	6	0	0	359	377	3
5		-12	240	235	4	5	7 0		36	129	2		10 10		60 61	63	5	6	0	2	249	278	3
5		-11	192	196	4	5	7]		88	295	3		10	0	144	56 143	4	6 6	0	6	263	265	4
5		-10	226	228	4	5	7 3		11	110	2		10	ĭ	295	304	4	6	0	8 10	363 303	347 279	4
5 5		-9 -8	126	125	3	5	7 4		37	245	3		10	2	394	405	4	ĕ		-9	92	103	5
5		-7	160 83	157 80	3	5	7 5		84	398	3		10	з	279	287	4	ĕ		-8	135	146	* *
š	5		113	108	3	5 5	7 6		60	167	3		10	4	281	285	4	6	1	-7	210	210	4
5			136	133	3	5	7.8		80 72	412 78	3 4		10 10	5	91	94	3	6		-6	356	362	4
5	5	-4	402	405	3	5	7		57	253	4		11	8	114 101	115	3	6		-5	119	122	3
5	5		238	239	4	5	7 1		87	82	3	5	11	-7	48	103 53	47	6		-4	447	445	4
5		-2	510	513	3	5	8 -9		26	218	4	ŝ	îî	-6	101	94	4	6 6		-3 -2	61 164	62	4
5 5	5 5	-1 0	322 288	343	3	5	8 - 7		16	437	4	5	11	-4	. 330	329	4	6	1	Õ	164	161 166	4
5	5	ĩ	200	287 238	3 3	5 5	8 - 9		80	496	4		11		72	65	4	6	ī	1	90	92	2
š	5	ź	100	230	2	5	8 -3 8 -3		99	97	3		11		332	331	4	6	1	2	346	382	3
5	5	4	205	204	4	5	8 (24 11	337 110	4 3		11		94	87	3	6	1	3	246	263	3
5	5	5	280	289	3	5	8 3		04	530	3		11	0 1	273 195	285	4	6	1	4	472	483	3
5	5	6	368	382	3	5			41	19	5		11	2	68	198 66	4	6	1	5	158	158	3
5	5	7	221	234	4	5	8 3	3 4	14	419	3		11	ã	231	234	4	ю 6	1	6 7	272	268	3
5	5 5	8	451	466	3	5	8 5		55	261	4		ii	5	102	103	3	6	1	8	48 78	63 72	5
5 5		9 10	109	114	3	5	8 7		51	51	5		11	6	291	299	4	6		10	139	132	3 3
5		-10	132 95	132 88	2 4	5	88	-	4B	46	5		11	7	56	49	4	6		-10	308	323	.5
5			292	292	4 5	5 5	8 9	_	40 65	245	4		12		330	309	5	6		-9	249	267	5
5		-8	244	235	4	5	9 -9		90	59 195	4		12		83	82	4	6		-8	222	230	4
5	6	-7	356	361	4	5	9 -8		80	195	4		12		228	219	4	6		-7	95	91	4
5	6	-6	313	319	4	5	9 -7		96	97	4		12 12		104 43	109 41	3	6		-5	77	78	4
											•	_		*	43	41	b	6	2	-4	84	87	4

•

Table 3.9. Continued

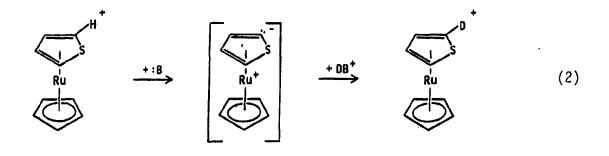
.

H	ĸ	L -	Fobs	Fcalc	SigF	H	к L	Fobs	Fcalc	SigF	н	ĸ	L -	Fobs	Fcalc	SigF	н -	ĸ	L _	Fobs	Fcalc	SigF
6	2		182	192	4	6	5-8	185	186	4	6	8	-4	201	204	4	7		-3	191	192	4
6 6	22		224 257	227 258	4	6 6	5 -7	277 139	278 137	5 3	6	8 8	-3 -2	69 401	66 410	4	7	2	-2 -1	263 194	254 193	4
6	ž		375	384	3	ĕ	5 -5	463	465	4	ő	8	Ō	330	339	4	ż	2	0	-90	95	з
6	2		280	289	3	6	5 -4	111	110	3	6	8	2	175	168	4	7	2		182	192	3
6	2		250	264	. 3	6 6	5-3	278 194	281 194	4 3	6	8 9	6 -6	226 329	231 329	4 5	77	2 2		211 277	226 277	4 4
6 6	2 2		159 54	162 36	4	6	5 -1	194	194	3	6	9	-5	151	153	3	7	ź		212	208	3
6	2		242	239	3	6	5 0	67	75	4	ő		-4	353	349	4	ż	2		156	153	ž
6	2	6	204	200	4	6	5 1	373	382	3	6		-3	77	79	4	7	3		217	211	4
6	2		255	255	4	6	5 2		179	3	6	9	-2	59	51	4	7	3		62	44	5
6 6	2		199 191	202 185	3	6 6	53 54		384 260	3	6	9	0 1	123 77	123 73	3	77	3		212 105	206 100	4 3
6	2	-10	53	56	6	6	5 5		303	4	6		2	155	155	3	7	3		363	371	4
6		-9	81	81	4	Ğ	5 6		65	4	. 6	-	3	174	167	4	7	3		217	209	4
6	3	-8	145	152	3	6	57		175	3	6		4	189	192	4	7	3		311	318	4
6	3		337	345	4	6	5 9		118	3	6	-		114	110	3	7	3		47	40	5
6	3		88 446	89 458	4	6 6	6 -9 6 -8		205 189	4	6 6		6 -5	248 69 [.]	249 62	5 5	777	· 3		105 57	98 57	3 4
6		-4	45	37	6	6	6 ~7		52	-	6		-3	142	148	3	7	4	_	285	279	5
6	3		260	260	4	ĕ	6 -6		65		6		-2	118	124	3	7	4		49	38	7
6	3	-2	173	167	3	6	6 -5		93				-1	248	252	4	7	4		446	432	4
6	1	-	114	114	2	6	6 -4					10		200	191	4	7			270	263	4
6	1.01		295 277		3	6 6	6 -3 6 -3					10		252 143	257 139	4 2	777	4		43 156	7 169	. 3
6	3		424		3	6	6 -1					10		62	54		ż			283	280	4
6	3	34	210		4	6	6 (-3	224	207	4	7	4		76	66	4
6	-		367			6	6 1						-2	58	53	5	7			294	281	4
6	191		62			6	6 2						-1	52	42	6	7 7			124 327	120 329	د ۸
6 6	-		118 39			6 6	64				6	11	2	220 98	208 91	4 3	, ,			254	237	
ĕ	3		105			6	6 6	_			7		-7	96	90	4	7			271	266	4
6	4		243			6	6 7				7		-5	359	367	4	7			111	112	
6			43			6	6 1				7		-3	397	384	4 3	777			133 234	127 224	
6	4	4 -7 4 -5	271 47			6 6	7 -1				7	-	-1	102 171		-	, 7		5 - 3	152	149	
6		4 -4	61			6	7 -1				;			363	361		7		5 -2	190		
6	4	4 -3	409	410	4	6	7 -4	342			7	1	7	239	240	4	7	: e	5 -1	168	169	3
6		4 -2	94			6	7 -				7		-5	68			7		5 0	74		
6		4 - 1 4 0	463 41			6 6	7 -				7		4	67 249			7 7		51 52	54 84		
6			302			6	7 -	1 10			7	-	-1	362			, ,		62 63		-	
Ğ		4 Ż	57			6		i 13e				7 1		196			ż		7 -3			
6		43	119			6		2 295	5 304	4		7 3	1	300	313	4	7		7 -2			
6		4 4	45			6		3 212				1		169			7		7 -1			
6		4546	133		_	6 6		320 5 126				1 7 7		216			7		70 71		_	
6		46 47	85 388			6		5 126 5 216					16 2-6	72 183			7		1 7 2			
6		49	413			6	8 -						2 -5	170			,			1/1	100	•
6		5 -9	75			6							2 -4	195								

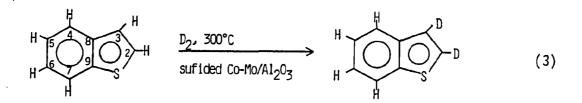

ŗ

SECTION IV. DEUTERIUM EXCHANGE OF BENZO(b)THIOPHENE: MODEL COMPLEX AND HETEROGENEOUS REACTOR STUDIES¹

INTRODUCTION


The industrial importance of the process of catalytic hydrodesulfurization (HDS), generally accomplished using a cobalt-promoted molybdenum catalyst and resulting in the removal of sulfur from organosulfur compounds found in crude oils and coal liquids,² is widely recognized.³ Because of the extensive application of HDS, numerous investigations aimed at obtaining a better understanding of the process have been undertaken.⁴ However, the mode of coordination of the sulfur compounds to the catalyst surface as well as key steps of the desulfurization are still not well understood.

Since the study of deuterium exchange reactions provides an opportunity for learning about the nature and reactivity of adsorbed intermediates on catalyst surfaces,⁵ several deuterium exchange investigations of representative sulfur-containing compounds over HDS catalysts have been reported.⁶ The compound usually chosen is thiophene $(T)^{6,7}$ which is the simplest member of the largest class of organosulfur compounds found in crude oils.⁸ The exchange occurs most readily in the 2 and 5 positions, as shown in eq. 1, with lesser amounts of exchange


occurring in the 3 and 4 positions. The exchange of methyl derivatives of T has also been investigated.^{7b,e} The results of these studies have been

interpreted as supporting various adsorption modes, reaction pathways and types of catalytic sites present on the surface. Recently, the rates of deuterium exchange in the π -thiophene ligands of [CpRuL]⁺ (L = T, 2-MeT, 3-MeT, 2,3-Me₂T), as models of π -adsorbed thiophenes on HDS catalysts, have been reported.⁹ The rate-determining step of the exchange reaction, shown for the T complex in eq. 2, was proposed to be H⁺ abstraction from T

by OH⁻. The deuterated compound is then produced by D⁺ transfer from the CD_3OD solvent.^{9a} The rates of exchange for the different hydrogens in the complexes (H_{2,5} > H_{3,4} > CH₃) follows the same order as the relative amounts of deuterium exchanged into these positions over HDS catalysts. These results provide strong support for the proposal that π -adsorbed thiophenes (Ts) are intermediates in the deuterium exchange of Ts on catalyst surfaces.

Although the mechanism of T HDS has been intensively investigated, it has been suggested that benzo[b]thiophene (BT) and its derivatives would actually provide better models for studies of the HDS process.¹⁰ In addition to their being more difficult to desulfurize than T they are usually the predominant type of thiophenic compound found in crude oils and coal liquids.^{11,12} A number of reports of BT HDS reactor studies have appeared^{4,8,12,13} but only one addresses the deuterium exchange reaction of BT.^{7c} Cowley interpreted ¹H and ²H NMR spectra as well as mass spectral fragmentation data of the deuterated BT to indicate that BT undergoes preferential exchange at the 2 and 3 positions of BT as shown in eq. 3. He concluded that this result supported π -coordination of the

thiophene ring of BT to the catalyst surface because a one-point sulfur coordination mode would give rise to exchange at the 2 and 7 positions. Flat, π -coordination of BT to HDS catalysts has been proposed by others.^{13a,14}

Our approach to the elucidation of BT adsorption modes and HDS reaction pathways includes studying the reactivity of π -bound BTs in transition metal model complexes.¹⁵ In this publication, the base catalyzed deuterium exchange reaction of [CpRu(BT)]PF₆, 1, and [CpRu(3-MeBT)]PF₆, 2, are reported. Because Cowley's experiments were conducted using a 60 MHz NMR instrument, which was not capable of resolving either the H4 and H7 or the H2, H3, H5, and H6 resonances of BT, we also reexamined the exchange reactions of BT over HDS catalysts. By using a 300 MHz NMR instrument, all of the resonances of BT except H5 and H6 are resolved (Figure 4.1) and, therefore, the positions at which exchange

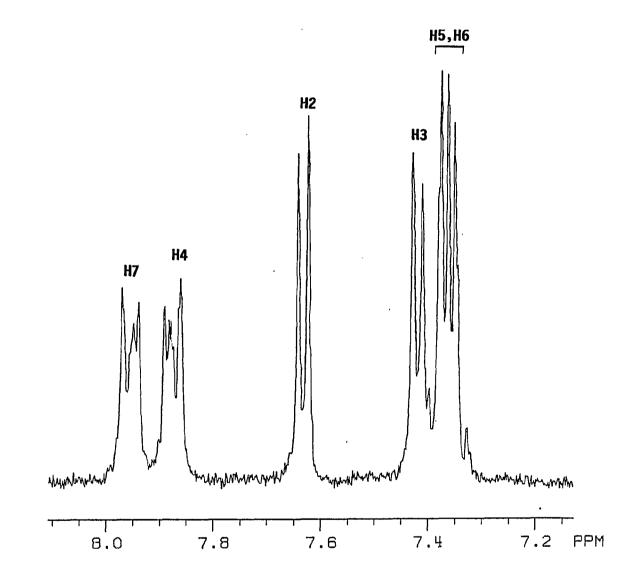


Figure 4.1. 300 MHz $^{1}\mathrm{H}$ NMR spectrum of BT in $\mathrm{d}_{6}\mathrm{-acetone}$

occurs can be clearly established. The results of studies which employed a variety of catalysts ($PbMo_{6.2}S_8$, 1% Pt-10% Re/ γ -Al₂O₃, Co_{0.25}MoS, and 5% Re/ γ -Al₂O₃) as well as γ -Al₂O₃ are presented.

EXPERIMENTAL

General procedures The compounds $[CpRu(BT)]PF_6^{15}$, 1, $[CpRu(3-MeBT)]PF_6^{15}$, 2, and $[CpRu(n-C_6H_6)]PF_6^{16}$ were prepared by literature methods. The CD₃OD (99.5%) was purchased from Cambridge Isotope Laboratories and stored over 4-Å molecular sieves under N₂. The BT and 0.5 N KOH/CH₃OH solution were purchased from Aldrich. The ¹H NMR spectra were obtained on a Nicolet NT-300 spectrometer using deuterated solvents as internal locks and the ²H NMR spectra were obtained on a WM-300 spectrometer using acetone as an internal lock.

Preparation of samples, data collection, and analysis of the kinetic data The 0.10-1.1 M concentrations of KOH/CD₃OD solutions were obtained as follows. The required amount of the standard KOH/CH₃OH solution was measured using a 1.00 mL syringe and added to a 5 mm NMR tube which was then capped with a rubber septum. The CH₃OH solvent was removed in vacuo. Then, 0.30 mL of CD₃OD was added to the NMR tube which was recapped and shaken to dissolve the KOH. At this point either 1 (0.0046 g, 1.0 x 10^{-5} mol, 0.033 M) or 2 (0.0048 g, 1.0 x 10^{-5} mol, 0.033 M) was added to the NMR tube. The septum was then sealed with Parafilm.

The samples were thermostatted at 23.8° C in a constant temperature water bath. The exchange process was followed by removing the tubes from the bath at appropriate times, taking their ¹H NMR spectra, and returning the tubes to the bath. Peaks of the desired protons in the BT ligand were integrated against either the Cp, Me or H4 peaks, none of which underwent significant exchange under these conditions. This was verified by addition of 0.1 μ L of an internal integration standard, t-BuOH, to the 0.20 M [KOH] runs with 1 and 2. The data were collected until 55-70% exchange of the proton of interest had occurred. The timescale of these experiments ranged from 1 h (1.1 M [KOH]; 1, H2) to 43 h (0.20 M [KOH]; 2, H7).

The 0.0 M [KOH] run for 1 was performed by adding 1 (0.0046 g, 1.0 x 10^{-5} mol, 0.033 M) to an NMR tube containing 0.30 mL of CD₃OD (0.30 mL). Without any KOH present, the polarity of the solution was too low to completely dissolve the compound. Integrals of H2 and H7 were monitored over a period of 143 h at 23.8°C. No exchange occurred. A similar experiment with 2 (0.0047 g, 1.0 x 10^{-5} mol, 0.033 M) showed that no exchange occurred over 90 h.

In order to determine whether uncoordinated BT undergoes basecatalyzed exchange under the conditions of these studies, the following experiment was performed. To 0.30 mL of a 1.1 M KOH/CD₃OD solution was added BT (approximately 0.005 g, 4 x 10^{-5} mole, 0.1 M), and the mixture was thermostatted at 23.8°C. The integrals of H2 and H7 were monitored for 88 h during which time no exchange occurred. The exchange reaction for [CpRu(n-C₆H₆)]PF₆ was also performed. To 0.30 mL of a 1.1 M KOH/CD₃OD solution was added [CpRu(n-C₆H₆)]PF₆ (0.0051 g, 1.3 x 10^{-5} mol, 0.044 M). The NMR tube was thermostatted at 23.8°C, and the integral of the benzene peak was monitored over a period of 116 h. No exchange occurred.

The observed rate constants, k_{obs} , were obtained from least squares analyses of plots of lnI_{HX} versus time (I_{HX} is the integral of proton X, X = 2 or 7; k_{obs} = -slope) and are presented in Table 4.1. The correlation

coefficients for these plots averaged 0.98; the error in these values is primarily a result of the $\pm 5\%$ error in the integration of the H2 and H7 resonances in ¹H NMR spectra of the exchange reactions. The second order rate constants, k_{HX} (X = 2 or 7), in Figure 4.2, were obtained from least squares analyses of plots of $k_{obs,HX}$ versus [KOH]. The errors in the calculated values of k_{HX} are a result of errors in $k_{obs,HX}$ and in [KOH] due to small amounts of CH_3OH not being removed in vacuo from the standard KOH/CH₃OH solution.

Catalyst synthesis The lead Chevrel phase catalyst, $PbMo_{6.2}S_8$, was prepared from stoichiometric amounts of 200 mesh, powdered molybdenum metal (reduced at 1000°C in hydrogen for 18 h), lead sulfide, and powdered sulfur. The mixture was ground together thoroughly, pressed into 13 mm pellets, and then sealed in evacuated fused-silica tubes. The tubes were heated to 1200°C for 24 to 48 hours.

The unsupported $Co_{0.25}MoS$ catalyst was synthesized by preparing material with a molar cobalt to molybdenum ratio of 1:4, using the homogeneous precipitation technique,¹⁷ followed by pretreatment at 450°C in 2% H₂S/H₂ for 4 h.

The supported rhenium catalyst was prepared by aqueous impregnation of Re_2O_7 into a calcined $_{Y}-\text{Al}_2\text{O}_3$ support (Armak O3-331, 175 m²/g) to give a 5% loading of Re by weight. The detailed procedure has been previously described.¹⁸ The catalyst was sulfided <u>in situ</u> by flowing 2 mole % BT/H₂ at the reaction temperature for approximately 5 h.

The supported 1% Pt-10% Re/y-Al_20_3 catalyst was prepared by impregnation of a calcined y-Al_20_3 support (Armak 03-331) with an aqueous

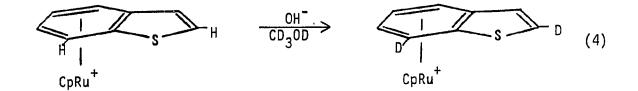
solution of Re_20_7 to produce a 5 weight % loading of Re. A 10 weight % Re loading was achieved by consecutive drying and impregnation steps. The 1% Pt was added using an aqueous solution of chloroplatinic acid. After final drying, the catalyst was reduced by heating slowly in a stream of H₂ from room temperature to 500°C. Sulfiding was performed <u>in situ</u> in the same manner as for the 5% $\text{Re}/_{Y}$ -Al₂0₃ catalyst.

Catalyst characterization The purities of the $PbMo_{6.2}S_8$ and the $Co_{0.25}MoS$ catalysts were established by X-ray powder diffraction and laser Raman spectroscopy. A detailed description of the characterization methods and results has been previously given.¹⁹ The catalysts were stable under the reaction conditions; no changes in purity or formation of other phases were noted.

The supported Re catalyst was characterized before and after pretreatment by laser Raman spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and thermogravimetric analysis.¹⁸ Raman spectra showed that none of the Re_20_7 starting material was present in the catalyst. Slow heating rates were required (2°C/min) during reduction of the catalyst to prevent the loss of Re. This catalyst was also shown to be very resistant to sulfiding treatments and remained stable under reaction conditions.

Apparatus and procedures The reactor for these studies consisted of a 1/4" stainless steel tube in which the catalyst was held in place with a stainless steel screen. Catalyst loadings were: $PbMo_{6.2}S_8$ (0.336 g), 1% Pt-10% Re/Y-Al₂O₃ (0.249 g), Co_{0.25}MoS (0.164 g), 5% Re/Y-

grave and the


 $A1_20_3$ (0.199 g). Liquid BT (Aldrich, 97%) was fed to the system by a Sage 341 syringe pump from a 1 mL Hamilton "gas tight" syringe. BT is a solid at room temperature (m.p. 29-32°C), therefore, it was necessary to heat a small chamber surrounding the syringe to 40°C. The BT was pumped into a saturator, which was maintained at 230°C and packed with glass beads, where it was mixed with hydrogen or deuterium and vaporized. All lines downstream of the saturator were wrapped in heating tape and maintained at 235°C. Product analysis was performed using a 3% SP-2100 on a 100-120 mesh Suplecoport column in an Antek 310 gas chromatograph with a Hewlett Packard 3390A digital integrator. High purity helium (99.997%) was used as the carrier gas at 19 mL/min (STP).

The reactor was heated from room temperature to the reaction temperature in a flow of helium (1-2 h) for the $Co_{0.25}MoS$ and $PbMo_{6.2}S_8$ catalysts and in a flow of high-purity H₂ (99.997%) (12 h) for the supported Re catalyst. The He or H₂ was then replaced by a continuous flow of 2 mole % BT in research grade D₂ (99.99%) at 20 ml/min (STP). Reaction temperatures ranging from 250°-500°C were used as shown in Table 4.2. The system was allowed to stabilize at the reaction temperature (0.5-1 h), as evidenced by constant conversion of BT to other compounds (% conversion = 100-[percentage of d₀-d₆ BT in product stream]), before the BT collection began. Experiments were also performed using either the empty reactor or γ -Al₂O₃ (0.143 g) in the reactor. These experiments were undertaken to observe the ability, if any, of the alumina support in the Re and Pt-Re catalysts and of the stainless steel reactor to catalyze deuterium exchange in benzothiophene.

The exchanged BT was collected from the reactor stream in a 7 mm pyrex tube (cooled to 0°C) and was analyzed by mass spectrometry and 1 H and 2 H NMR. The error in integration of the 1 H NMR H2-H7 resonances (Table 4.3) is approximately ±10%.

RESULTS AND DISCUSSION

Base-catalyzed deuterium exchange of BT and 3-MeBT protons in [CpRu(BT)]PF₆, 1, and [CpRu(3-MeBT)]PF₆, 2 The 2 and 7 protons of the BT and 3-MeBT ligands in complexes 1 and 2, respectively, undergo basecatalyzed exchange with deuterium as shown in eq. 4.

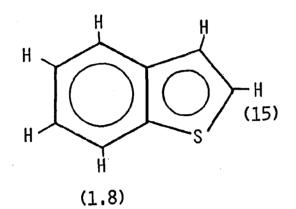
The kinetic data for this exchange reaction conform to the rate law,

 $-\frac{d[RuHX]}{dt} = k_{HX} [OH^-][RuHX] = k_{obs,HX} [RuHX]$

where [RuHX] is the concentration of the unexchanged ruthenium complex 1 or 2. The values calculated for k_{obs} are given in Table 4.1. From plots of $k_{obs,HX}$ versus [OH⁻] the second order rate constants, k_{HX} , are obtained. These results are presented in Figure 4.2. Only H2 and H7 are observed to exchange under the conditions of the studies.

The first order dependence of the exchange on $[OH^-]$ suggests that the slow step of the mechanism is proton abstraction from the Ru complex as has been proposed previously for deuterium exchange in T of $[CpRuT]^+$.⁹ The mechanism for H2 exchange reaction may be depicted as in eq. 5. The H2 exchanges much more readily than H7 in 1

[KOH] (M)	10 ⁵ k _{obs,H2} (s ⁻¹)	10 ⁵ k _{obs,H7} (s ⁻¹)
	[CpRu(BT)]PF ₆ , 1	
0.00	0.00	0.00
0.10	. 6.2	
0.20	6.8	0.61
0.50	11	1.3
0.70	16	1.7
1.1	20	2.2
1.5		3.3
	[CpRu(3-MeBT)]PF ₆ , 2	
0.00	0.00	0.00
0.20	1.2	0.58
0.50	1.6	0.76
0.70	2.4	1.3
0.90	2.8	1.3
1.1	3.7	1.4
1.3	4.3	1.8
1.5	5.0	2.2


•••

-

Table 4.1.	Rate constants, k _{obs} , for the KOH-catalyzed exchange of H2 and
	Rate constants, k_{obs} , for the KOH-catalyzed exchange of H2 and H7 in CD ₃ OD solvent at 23.8°C

-

• •

.

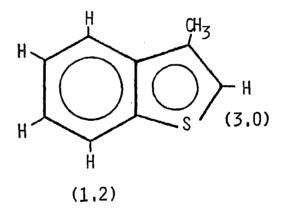
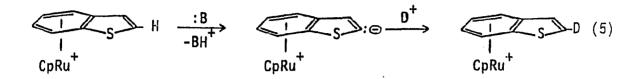



Figure 4.2. Second order rate constants, $10^5 k_{HX} (M^{-1}s^{-1})$, for the deuterium exchange in the benzothiophene ligands of [CpRu(BT)]⁺, 1, and [CpRu(3-MeBT)]⁺, 2

.....

 $(k_{H2} = 15 \times 10^{-5} \text{ M}^{-1} \text{s}^{-1}, k_{H7} = 1.8 \times 10^{-5} \text{ M}^{-1} \text{s}^{-1})$ but k_{H2} decreases significantly upon substitution of a methyl group in the 3-position (for 2, $k_{H2} = 3.0 \times 10^{-5} \text{ M}^{-1} \text{s}^{-1}$, $k_{H7} = 1.2 \times 10^{-5} \text{ M}^{-1} \text{s}^{-1}$). This decrease would be expected on the basis of the proposed mechanism since an electron donating 3-Me group would decrease the acidity of the H2 proton. A similar decrease is observed in the thiophene complexes, where the second order rate constant for H4 exchange in $[CpRu(T)]^+$ is approximately 7 times greater than k_{H4} for $[CpRu(3-MeT)]^+$.^{9a} The H7 rate constant for 1 and 2 is not greatly affected by methyl substitution.

An alternative mechanism, which would proceed via initial attack of OH⁻ at C3, followed by D⁺ addition at C2 and then stepwise loss of H⁺ from C2 and OH⁻ from C3, cannot be ruled out on the basis of the kinetic data assuming that the addition of OH⁻ is the rate determining step and that all subsequent steps are rapid. However, nucleophilic addition (H⁻) to 1 and to the related complex, $[(n-C_5(CH_3)_5)Ir(n^6-BT)](BF_4)_2$ (H⁻, OCH₃⁻, SCH₂CH₃⁻, CH(CO₂CH₃)₂⁻, and P(CH₃)₃), is known to occur preferentially at the 7-position¹⁵ and there were no peaks in the ¹H NMR spectra of the exchange reactions which would suggest that OH⁻ adduct formation had occurred. Therefore, the alternative mechanism seems less reasonable than that presented in eq. 5.

The protons (H2 and H7) exchanged in 1 and 2 are at different positions than those exchanged in the base-catalyzed exchange reaction of uncoordinated BT, which has been reported to occur in the 2- and 3-positions.²⁰ Zatsepina and coworkers^{20b} determined rate constants for deuterium exchange in BT in 0.57 N EtOK/EtOD between 50 and 150°C. The H2 $(k_{obs. 80^{\circ}C} = 9.1 \times 10^{-5} \text{ s}^{-1})$ exchanged faster than H3 $(k_{obs. 120^{\circ}C} = 0.23)$ x 10^{-5} s⁻¹) but much slower than H2 in either 1 or 2. Therefore, H7 and H2 of 1 and 2 are strongly activated to exchange by coordination of BT to Ru. However, H2 is not as strongly activated in 1 and 2 as it is in $[CpRu(T)]^+$ (k_{H2} > 1.5 M⁻¹ s⁻¹) where the T ring is directly coordinated to the transition metal center. The observed rate constant for H2 exchange in uncoordinated T (3.3 x 10^{-5} s⁻¹ at 80°C) is less than that in BT.^{20b} It is possible that H3 in 1 is also activated but still does not exchange at a measurable rate under these conditions. The presence of the sulfur atom and the coordination of the benzene ring of BT to CpRu⁺ both clearly play an important role in activating both H7 and H2 to exchange. No exchange of the benzene ring protons in $[CpRu(n-C_6H_6)]^+$ was observed after 116 h in 1.1 M KOH at 23.8°C.

Deuterium exchange of BT protons over HDS catalysts The results of the heterogeneous reactor studies are given in Table 4.2. The percent deuteration (\pm 5%) of the BT for each of the runs in Table 4.2 was calculated from the mass spectrum of the product; corrections for the M+1 and M+2 peaks, due to the ¹³C and ³⁴S isotopes, were made. For all the catalysts studied, the average number of deuterium atoms exchanged into BT, d_{ave}, generally increased with increasing temperature and percent

Catalyst	Reactor Temperature (°C)	Conversion (%)
PbMo6.2 ^S 8	450	2
PbMo _{6.2} S8	500	6
1% Pt-10% Re/ _Y -A1 ₂ 0 ₃	300	10
1% Pt-10% Re/y-A1203	400	35
Co _{0.25} MoS	250	8
Co _{0.25} MoS	300	27
Co _{0.25} MoS	350	86
5% Re/ _Y -A1 ₂ 0 ₃	300	1
5% Re/y-A1203	350	6
5% Re/ _Y -A1 ₂ 0 ₃	400	13
Y-A12 ⁰ 3	250	0
^{Y-A1} 2 ⁰ 3	300	0
^{Y-A1} 2 ⁰ 3	350	0
none	400	0

Table 4.2.	Results of	deuterium	exchange	of	BT	over	heterogeneous	HDS
	catalysts							

^aThe values in parentheses represent the random exchange value calculated from the binomial expansion of $(H+D)^6$ where D = $d_{ave}/6$ and H = (1-D).

.

% deuteration ^a							
d ₀ 	^d 1	^d 2		d ₄	d ₅	d ₆	d _{ave}
21(23)	42(38)	27(27)	7(10)	2(2)	1(0)	0(0)	1.3
14(18)	40(36)	34(30)	9(13)	2(3)	1(0)	0(0)	1.5
0(3)	7(14)	44(28)	30(30)	11(18)	4(6)	4(1)	2.7
1(2)	7(9)	36(23)	28(31)	12(23)	8(10)	8(2)	3.0
3(3)	17(15)	41(29)	15(30)	9(17)	8(5)	7(1)	2.6
2(3)	13(14)	37(28)	25(30)	12(18)	8(6)	3(1)	2.7
3(3)	12(13)	36(28)	24(30)	13(19)	8(6)	4(1)	2.7
1(8)	13(24)	61(32)	17(24)	3(10)	1(2)	1(0)	2.1
L(1)	4(8)	31(22)	30(31)	21(25)	10(11)	3(2)	3.1
2(0)	2(1)	11(4)	11(14)	16(31)	26(34)	32(16)	4.4
43(37)	34(40)	16(18)	4(4)	2(1)	1(0)	0(0)	0.9
L6(16)	32(33)	36(31)	10(15)	4(4)	2(1)	0(0)	1.6
i(3)	8(14)	30(28)	30(30)	18(19)	7(5)	2(1)	2.7
7(97)	3(3)	0(0)	0(0)	0(0)	0(0)	0(0)	0.03

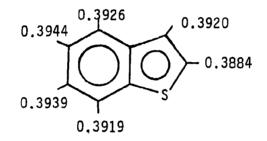
. .

•

.....

conversion for a given catalyst. This was also true of the runs with γ -Al₂O₃. No significant exchange was observed for BT run through the empty reactor at 400°C. The 5% Re/ γ -Al₂O₃ catalyst appears to be the most effective at catalyzing deuterium exchange. At 13% conversion (400°C) the d_{ave} = 4.4.

The random exchange values were calculated from the binomial expansion of $(H+i)^6$ where H and D represent the fraction of hydrogen, and deuterium, exchanged in each molecule of BT. Although the $_{\rm Y}\text{-Al}_{\rm 2}\text{O}_{\rm 3}$ runs resulted in significant exchange of BT ($d_{ave} = 0.91$ (250°C), 1.6 (300°C), 2.7 (350°C)) the distribution of d_0-d_6 BT species is clearly random. The $^{1}\mathrm{H}$ NMR spectra of the BT from the $_{\mathrm{Y}}\mathrm{-Al}_{2}\mathrm{O}_{3}$ experiments show (Table 4.3) that the 2- and 3-positions are preferentially exchanged (the integrals for H4-H7 were all of approximately the same magnitude). The random distribution of $d_0 - d_6$ for $\gamma - A_{12} O_3$ suggests that this is not due to activation by $_{Y}-Al_{2}O_{3}$ but is simply due to the higher intrinsic reactivity of BT at these positions. Essentially random distribution of the d_0-d_6 BT species is also found for $PbMo_{6.2}S_8$. However, in all of the other runs the d_0-d_6 distribution is non-random and in most cases the greatest deviation occurs in the percentage of d_2 -BT found in the exchanged BT. This implies that two of the positions on the BT ring are activated towards exchange by the catalyst. Integrals of the resonances in the $^{1}\mathrm{H}$ NMR spectra (d_6 -acetone, Table 4.3) of the exchanged BT clearly show that these are the 2- and 3-positions for all runs.


Cowley also reported deuterium exchange of H2 and H3 of BT for experiments performed with D_2 gas over a sulfided Co-Mo/Al₂O₃

Catalyst	Temperature (°C)	H2	Н3	H4	H5 H6	H7
pbMo _{6.2} S	400	58	102	101	187	100
^{26M0} 6.2 ^S	450	62	10 6	100	18 9	100
^{26Mo} 6.2 ^S	500	38	91	102	183	100
L%Pt-10% Re/ _Y -A1 ₂ 0 ₃	300	5	8	88	165	100
Co _{0•25} MoS	250	5	28	101	165	100
^{Co} 0.25 ^{MoS}	300	10	20	87	198	100
^{Co} 0.25 ^{MoS}	350	5	34	112	199	100
5% Re/y-A1203	300	10	30	99	183	100
i% Re∕γ-A1 ₂ 0 ₃	350	5	14	99	193	100
% Re/y-A1203	400	1	24	102	250	100
-A12 ⁰ 3	250	52	82	106	202	100
-A12 ⁰ 3	300	31	31	93	184	100
-A12 ⁰ 3	350	16	38	93	212	100
one	400	85	107	10 6	199	100

Table 4.3. Integrals from ${}^{1}\text{H}$ NMR spectra of exchanged BT a

^aIntegrals are relative to that of the H7 resonance which was set to 100.

thiophene ring of BT on the surface of the catalyst as opposed to S-bound since he proposed that S-bound BT would give rise to H2 and H7 exchange. However, the results reported for the deuterium exchange of 1 and 2 do not support this argument since π -coordination of the benzene ring of BT was shown to result in H2 and H7 exchange. The results of ab initio molecular orbital calculations for BT²¹ were cited to help account for the observed selectivity of the exchange reaction. The electron densities of the C-H bonds of BT determined by this calculation are shown below. However, it

is interesting to note that although the C-H2 and C-H3 bonds have low electron densities which could result in facile bond cleavage, the C-H7 bond has an even lower electron density than C-H3.

The exchange of BT over the catalyst was proposed, by Cowley, to occur via σ -complex formation as shown in Figure 4.2 for H2 exchange.^{7c} The first step of this sequence can be considered analogous to electrophilic attack at C2 by Mo³⁺. However, BT undergoes electrophilic attack preferentially at C3; this is supported both experimentally²² and by MO calculations (performed using the Pariser-Parr approach)²³ which give the π -electron densities at C2-C9 (shown below). Furthermore, because of the enhanced resolution available by using a 300 MHz NMR

174

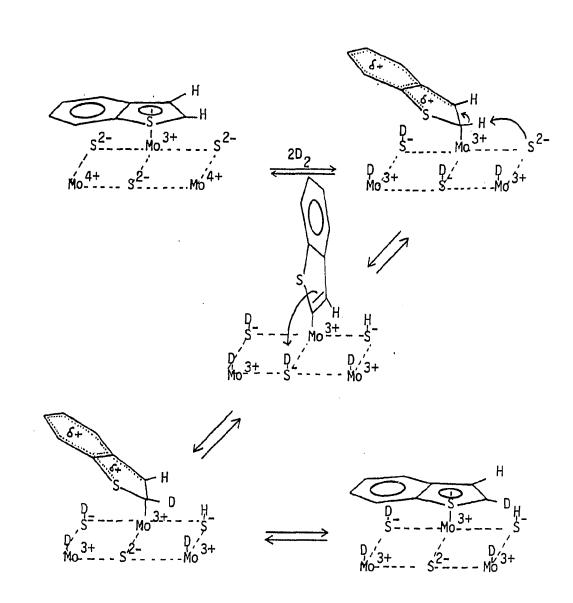
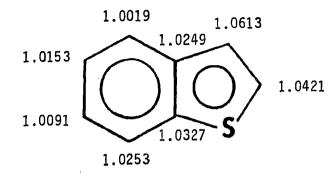



Figure 4.3. Cowley's proposed mechanism for deuterium exchange,^{7C} shown for H2

····

.

-

might suggest that H3 would exchange faster than H2. However, it is now possible to show that H2 is more readily exchanged than H3 over HDS catalysts (Table 4.3). This implies that the C-H bond breaking step in the proposed mechanism, which would favor H2 exchange due to the lower electron density of the C-H2 bond, may also play an important role in determining the preferred site of exchange. Alternatively, the exchange could occur by deprotonation of π -coordinated BT, by a basic site such as S^{2-} , without σ -complex formation. The base-catalyzed exchange reactions of T and BT in CpRu⁺ complexes provide precedent for direct deprotonation of π -bound thiophenic compounds.

In all of the samples, significant percentages of d_3 -BT were also produced in addition to d_2 -BT. It was of interest to determine if the third deuterium was preferentially exchanged into any of the positions on the benzene ring of BT, particularly in view of the relatively rapid exchange of H7 in [CpRu(BT)]⁺. However, the resonances of H4-H7 in the deuterated BT integrated to approximately the same values for all of the runs. Therefore, the ²H NMR spectrum of the deuterated BT from the Co_{0.25}MoS (300°C) experiment was obtained. The integrals of the deuterium

176

resonances were, D2(208), D3(202), D4(60), D5 and D6(100), and D7(40), which clearly illustrate the high degree of 2- and 3- exchange which had occurred as well as the lack of marked preference for exchange at any one of the 4-, 5-, 6- or 7-positions.

CONCLUSIONS

Coordination of either BT or 3-MeBT to $CpRu^+$ activates H2 and H7 towards deuterium exchange. However, over several HDS catalysts, BT is activated to exchange in the 2- and 3-positions and there is no activation of a particular position on the benzene ring to exchange. Thus, based on the different deuterium exchange patterns of BT in $[CpRu(BT)]^+$ and on the HDS catalysts, it is unlikely that BT adsorbs during deuterium exchange via its benzene ring despite the demonstrated preference of Ru, Ir, Rh and Cr to coordinate to the benzene rather than the thiophene ring.^{15,24}

 π -Coordination of BT through all or part of the thiophene ring cannot be ruled out on the basis of these studies. Since H2 and H3 were preferentially exchanged over the catalysts and H2 was strongly activated to exchange by π -coordination of the benzene ring to CpRu⁺ in the model complexes, it seems reasonable that coordination of the thiophene ring of BT to the catalyst would activate H3 as well as H2 as occurred for exchange in [CpRu(T)]⁺.^{9a} However, coordination of the extended π -system, involving both the thiophene and benzene rings, is not supported by these results. In the benzene-bound model complexes, 1 and 2, H7 was activated to exchange relative to H4, H5, and H6 but a similar trend was not observed over the HDS catalysts.

178

REFERENCES

- Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract No. W-7405-Eng-82. This research was supported by the Office of Basic Energy Sciences, Chemical Sciences and Materials Sciences Divisions.
- 2. Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. "Chemistry of Catalytic Processes"; McGraw-Hill Book Co.: New York, 1979; p. 392.
- 3. (a) Schuman, S. C.; Shalit, H. in "Catalysis Reviews"; (Heinemann, H. ed.); Marcel Dekker, Inc.: New York, 1971; p. 246. (b) Satterfield,
 C. N. "Heterogeneous Catalysis in Practice"; McGraw-Hill Book Co.: New York, 1980; p. 260.
- 4. (a) Schuit, G. C. A.; Gates, B. C. <u>AIChE Journal</u> 1973, <u>19</u>, 417. (b) Kwart, H.; Schuit, G. C. A.; Gates, B. C. <u>J. Catal.</u> 1980, <u>61</u>, 128.
 (c) Lopez, R.; Peter, R.; Zdrazil, M. <u>J. Catal.</u> 1982, <u>73</u>, 406. (d) Van Parijs, I. A.; Hosten, L. H.; Froment, G. F. <u>Ind. Eng. Prod. Res.</u> <u>Dev.</u> 1986, <u>25</u>, 437.
- 5. Kemball, C. <u>Chem. Soc. Rev.</u> 1984, <u>13</u>, 375.
- 6. McCarty, K. F.; Schrader, G. L. J. Catal. 1987, 103, 261.
- 7. (a) Blake, M. R.; Eyre, M.; Moyes, R. B.; Wells, P. B. <u>Stud. Surf.</u> <u>Sci. Catal.</u> 1981, 7, 591. (b) Behbahany, F.; Sheikhrezai, Z.; Djalali, M.; Salajegheh, S. <u>J. Catal.</u> 1980, <u>63</u>, 285. (c) Cowley, S. W. Ph.D. Thesis, Southern Illinois University, Carbondale, 1975. (d) Mikovsky, R. J.; Silvestri, A. J.; Heinemann, H. <u>J. Catal.</u> 1974, <u>34</u>, 324. (e) Smith, G. V.; Hinckley, C. C.; Behbahany, F. <u>J. Catal.</u> 1973, <u>30</u>, 218. (f) Kieren, P.; Kemball, C. <u>J. Catal.</u> 1965, <u>4</u>, 394.

- 8. (a) Geneste, P.; Amblard, P.; Bonnet, M.; Graffin, P. <u>J. Catal.</u> 1980,
 <u>61</u>, 115. (b) Rollman, L. D. <u>J. Catal.</u> 1977, <u>46</u>, 243.
- 9. (a) Sauer, N. N.; Angelici, R. J. <u>Organometallics</u>, 1987, <u>6</u>, 1146.
 (b) Spies, G. H.; Angelici, R. J. <u>J. Am. Chem. Soc.</u> 1985, <u>107</u>, 5569.
- 10. Kilanowski, D. R.; Gates, B. C. J. Catal. 1980, 62, 70.
- 11. Singhal, G. H.; Espino, R. L.; Sobel, J. E. <u>J. Catal.</u> 1974, <u>35</u>, 353.
- 12. (a) Bartsch, R.; Tanielian, C. <u>J. Catal.</u> 1974, <u>35</u>, 353. (b) Givens,
 E. N.; Venuto, P. B. <u>Prep. Am. Chem. Soc.</u>, Div. Pet. Chem. 1970, <u>15</u>,
 A 183.
- 13. (a) Pokorny, P.; Zdrazil, M. <u>Coll. Czech. Chem. Commun.</u> 1981, <u>46</u>, 2185. (b) Kilanowski, D. R.; Teeuwen, H.; deBeer, V. H. J.; Gates, B. C.; Schuit, G. C. A.; Kwart, H. <u>J. Catal.</u> 1978, <u>55</u>, 129. (c) Furimsky, E.; Amberg, C. H. <u>Can. J. Chem.</u> 1976, <u>54</u>, 1507.
- 14. (a) Nag, N. K.; Sapre, A. V.; Broderick, D. H.; Gates, B. C.
 <u>J. Catal.</u> 1979, <u>57</u>, 509. (b) Zdrazil, M. <u>Coll. Czech. Chem. Commun.</u>
 1977, <u>42</u>, 1484. (c) Mitchell, P. C. H. <u>Catalysis</u> 1981, <u>4</u>, 175.
- Huckett, S. C.; Angelici, R. J. <u>Organometallics</u>, submitted for publication.
- 16. Gill, T. P.; Mann, K. R. Organometallics 1982, 1, 485.
- 17. Candia, R.; Clausen, B. S.; Topsoe, H. <u>Bull. Chim. Belg.</u> 1981, <u>90</u>, 1225.
- 18. Markel, E. J. M.S. Thesis, Iowa State University, Ames, 1986.
- McCarty, K. F.; Schrader, G. L. <u>Ind. Eng. Chem. Prod. Res. Div.</u> 1984, 23, 519.

- 20. (a) Yakushina, T. A.; Shapiro, I. O.; Zvyagintseva, E. V.; Litvinov,
 V. P.; Ozolins, S.; Gol'dfarb, Y. L.; Shatenshtein, A. I. <u>Zh. Obshch.</u> <u>Khim.</u> 1971, <u>41</u>, 1930. <u>Chem. Abstr.</u> 1972, <u>76</u>, 24481. (b) Zatsepina,
 N. N.; Kaminskii, Y. L.; Tupitsyn, I. F. <u>Reakts. Sposobn. Org.</u> Soedin. 1969, 6, 753.
- 21. Cowley^{7C} references a forthcoming Ph.D. Thesis (Millman, W. S.; Southern Illinois University, Carbondale) for these calculations.
- 22. Scrowston, R. M. Adv. Het. Chem. 1981, 29, 171.
- Klasnic, L.; Pop, E.; Trinajstic, N.; Knop, J. V. <u>Tetrahedron</u> 1972, <u>28</u>, 3465.
- 24. (a) King, R. B.; Stone, F. G. A. <u>J. Am. Chem. Soc.</u> 1960, <u>82</u>, 4557.
 (b) Fischer, E. O.; Goodwin, H. A.; Kreiter, C. G.; Simmons Jr.,
 H. D.; Sonogashira, K.; Wild, S. B. <u>J. Organomet. Chem.</u> 1968, <u>14</u>, 359.

SUMMARY

The synthesis of model complexes of T and BTs has provided an opportunity to study the preferred coordination modes and reactivities of these ligands. Both T and BTs favor π -coordination to transition metal centers; BTs coordinate in an n^6 -fashion via the benzene ring. The T and BTs in these models are activated to nucleophilic addition and base catalyzed deuterium exchange reactions. Nucleophilic addition to n^6 -BTs occurs only at the four tertiary carbons of the benzene ring. Because these reactions do not produce BT derivitives which are likely HDS intermediates, it was proposed that better models for BT coordination to catalyst surface would involve thiophene ring coordination to a transition metal center. This view was supported by the results of base catalyzed deuterium exchange experiments using $[CpRu(BT)]^+$ and $[CpRu(3-MeBT)]^+$ as well as by the results of deuterium exchange of BT over heterogeneous HDS catalysts. The latter results suggest that BT adsorption to catalyst surfaces does not occur through the extended aromatic system but through either a sulfur or π -interaction of the thiophene ring.

ACKNOWLEDGMENTS

I would like to thank my family, Steve, Jennifer, Benjamin and Mom, Denny and Leah for all the support and encouragement they have given me over these last four years.

Dr. Angelici, and the rest of the A-Team, also have my sincere gratitude for the guidance, patience, and friendship that they have provided.